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ABSTRACT

Head pose estimation is challenging in a naturalistic environ-
ment. To effectively train machine-learning algorithms, we
need datasets with reliable ground truth labels from diverse
environments. We present Fi-Cap, a helmet with fiducial
markers designed for head pose estimation. The relative po-
sition and orientation of the tags from a reference camera can
be automatically obtained from a subset of the tags. Placed at
the back of the head, it provides a reference system without
interfering with sensors that record frontal face. We quantify
the performance of the Fi-Cap by (1) rendering the 3D model
of the design, evaluating its accuracy under various rotation,
image resolution and illumination conditions, and (2) compar-
ing the predicted head pose with the location of the projected
beam of a laser mounted on glasses worn by the subjects in
controlled experiments conducted in our laboratory. Fi-Cap
provides ideal benchmark information to evaluate automatic
algorithms and alternative sensors for head pose estimation
in a variety of challenging environments, including our target
application for advanced driver assistance systems (ADAS).

Index Terms— Head pose estimation, benchmark for
head pose.

1. INTRODUCTION

Tracking rigid head motion has useful applications in vari-
ous areas. The position and orientation of the head can give
crucial information about the visual attention of a subject [1],
emotional state [2] and engagement in a conversation [3]. In
a driving environment, head pose provides useful information
about the driver’s visual attention [4,5]. Head motion can pro-
vide non-verbal cues during human interaction [6]. Head pose
estimation is also a crucial pre-step in facial expression anal-
ysis and face landmark location [7]. The wide range of appli-
cations for head pose estimation has established the need for
a stand-alone tool that automatically estimates head pose in a
variety of challenging environments. A challenge in design-
ing such a system is to obtain continuous annotated data for
head pose of a subject in diverse situations, providing ground
truth labels to train robust classifiers.

Several studies have explored benchmark approaches to
annotate the position and orientation of the head. Previous

This work was supported by Semiconductor Research Corporation
(SRC) / Texas Analog Center of Excellence (TXxACE), under task 2810.014.

978-1-5386-1737-3/18/$31.00 (©2018 IEEE

busso@utdallas.edu

studies have used magnetometers [8], Inertial Measurement
Units (IMUs) [9], motion capture systems [10] and fiducial
markers [4]. These approaches have limitations. For example,
magnetometer provides unreliable information when metal is
present in the environment. Data obtained from IMU is very
noisy, especially in environments with additional vibrations
such as vehicles, which is our target application. While mo-
tion capture systems can provide highly accurate information,
they require a specialized and controlled setup. Using fidu-
cial markers can occlude the face if the setting is not properly
designed. There is a need for a system that can be used with
minimal effort to reliably provide ground truth labels for head
pose estimation in unconstrained scenarios.

This study presents Fi-Cap, a cap-like design with fiducial
markers that addresses most of the challenges to benchmark
continuous head poses in challenging scenarios. The study
is inspired by the work of Jha and Busso [11], where a head
band with AprilTags was used to track the head motion of a
driver. Fi-Cap improves this design in three significant as-
pects: (1) the size of each square is bigger and, therefore,
the fiducial markers can be detected more accurately, (2) the
design considers markers in the horizontal and vertical direc-
tions, increasing the precision for pitch, yaw and roll rota-
tions, and (3) the cap is worn on the back of the head with-
out interfering with any sensor used to record the subject’s
face. The design of the Fi-Cap system allows multiple fiducial
markers to be seen regardless of the head rotation of the tar-
get subject. As long as few of the tags are visible, the system
is able to provide reliable frame-by-frame estimations which
can be used as ground truth for training and evaluating head
pose estimation algorithms.

We conduct evaluations to validate the accuracy of the
Fi-Cap system. In a virtual environment, we simulate the
proposed design by rendering a virtual character wearing the
Fi-Cap system. We use different rotations, illumination con-
ditions, and image resolutions. The system is very robust
against these variations. We also conduct experiments in our
laboratory, where we ask subjects to wear the Fi-Cap system.
The subjects also wear a laser mounted on glasses, projecting
a trackable mark on a white screen signaling their head pose.
The evaluation suggests that with a few seconds of calibra-
tion, the system provides reliable head pose estimation.

The Fi-Cap design opens opportunities to advance head



pose estimation algorithms that work on real, challenging
conditions. Using Fi-Cap, we plan to collect data in natural-
istic driving environment where current head pose estimation
algorithms seem to struggle [11]. To Illustrate the potential of
Fi-Cap, we conduct a preliminary recording during naturalis-
tic conditions of a driver wearing the proposed Fi-Cap. The
results show that at least one tag is observed in 99.8% of the
frames. Furthermore, we are able to detect four or more tags
in 99.2% of the frames, increasing the reliability of head pose
estimation. These large naturalistic databases are needed for
designing robust algorithms for advanced driver assistance
systems (ADAS).

2. RELATED WORK

Head pose estimation is an important research problem with
implications in many fields. Murphy-Chutorian and Trivedi
[12] and Czuprynski and Strupczewski [13] provided surveys
with advances in head pose estimation systems. Some of the
off-the-shelf facial processing tools such as IntraFace [14],
OpenFace [15] and zFace [16] include state-of-the-art head
pose estimation algorithms from regular cameras. Other stud-
ies have explored the use of depth data to estimate head pose
using sensors such as the Kinect [17]. Since recent studies
have started to use more advanced sensors such as Radar [18]
or Ultrasound [19] to track human movements, it is expected
that these technologies will also be employed to predict head
pose. A prerequisite for development in this area is data with
annotated head pose labels. Ideally, the data should be col-
lected across diverse environmental settings. While humans
can easily distinguish between coarse head poses, it is dif-
ficult to reliably quantify the exact position and orientation.
Therefore, reference systems are required to provide reliable
ground truth to train machine-learning algorithms for head
pose estimation.

Head pose estimation databases have relied on different
reference systems for head pose. A common approach in
early recordings was to ask the subject to look at predefined
locations. In the Pointing’04 database [20], subjects were
asked to sit in the center of the room and look at different
markers on the walls. They placed markers on the walls cre-
ating a discrete grid with 13 horizontal locations and nine ver-
tical locations. A similar approach was used for the Bospho-
rus database [21], which was collected by asking the subjects
to perform seven different yaw rotations, four pitch rotations
and two combinations of yaw and pitch rotations. They pro-
vided qualitative instructions for pitch rotation (e.g., down-
wards, slight upwards), so the head pose are not necessarily
consistent across subjects. These approaches require the sub-
jects to direct their head toward the target mark, while avoid-
ing any eye movement. Therefore, they are prone to errors.
A slightly more accurate method was employed by Rae and
Ritter [22]. They mounted a laser on top of the subject’s head
to verify the required head orientation. While these studies
have provided important milestones to advance the research
in head pose estimation, more advanced systems require ac-

curate ground truth for head pose. Moreover, this approach
can only provide information for pitch and yaw movements,
ignoring roll rotation.

Magnetic sensors such as the flock-of-bird provide a help-
ful method for annotating head pose in all six degrees of free-
dom. The setup consists of a transmitter that can track the po-
sition and orientation of magnetic sensors. The subjects are
asked to place the sensor on their head, which is tracked by
the transmitter. Ba and Odobez [8] collected a database with
two hours of video in office and meeting environments with
head pose annotations provided by magnetic sensors. Ariz et
al. [23] also collected a database with 10 subjects perform-
ing guided head poses, as well as free head motions. They
designed a head band with magnetic flock-of-birds to track
head motions. Magnetic sensors provide an accurate method
for continuous annotation of head pose. However, they are
limited by the environment, since the presence of metal can
cause high fluctuation in the data [12].

Inertial measurement units (IMUs) are another option to
track head movements. Most widely used and cheaper IMUs
such as InertiaCube? provide rotation angles, but not posi-
tions. Morency et al. [9] used IMU sensors as a reference
to design an adaptive view-based appearance model for head
pose. Tawari et al. [24] used a pair of calibrated IMUs in a
car to counter the effect of vibrations from the car. A ref-
erence IMU was placed inside the car and the second IMU
was worn by the driver to obtain the head pose. While IMUs
provide an effective method to track motions, they are highly
susceptible to noise in the form of micromotions. These arti-
facts should be eliminated by using noise reduction methods
such as Kalman filters. Also, there is a drift observed in the
recording, making the data suitable only for short recordings.

Motion Capture (MoCap) systems are also useful tools to
track motions. The systems rely on active markers with syn-
chronized LEDs, or passive markers with reflective surfaces.
These markers are placed on the object of interest, which are
tracked by the system. The IEMOCAP database [10] was col-
lected with a MoCap system, recording the head movement
of the subjects (facial expressions and hand movements were
also collected). A similar approach was used for the MSP-
AVATAR database [25], which includes dyadic interactions.
MoCap systems can also be useful in diverse environments.
Murphy-Chutorian et al. [26] designed an algorithm to esti-
mate head pose from monocular camera in a car. They used
a setup with multiple MoCap reflectors and cameras placed
at different angles to provide reference head poses. Schwarz
et al. [17] also collected a driver head pose dataset using a
Kinect camera, recording 2D and 3D data. They used a Mo-
Cap system with markers placed at the back of the head to
capture ground truth for the driver’s head motion. While Mo-
Cap systems provide accurate ground truths for head poses,
the setup is often expensive and require specialized cameras
for the recordings.

Our approach is similar to MoCap systems, without the
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Fig. 1. Design of Fi-Cap, which is worn on the back avoiding
occlusions with primary sensors.

need of expensive sensors. We use barcode markers that can
be easily detected using a simple RGB camera. Tag based
markers such as ARToolkit [27], ARTags [28] and AprilT-
ags [29] have found multiple applications in robotics, aug-
mented reality and computer vision. AprilTags [29] are 2D
fiducial markers with black and white patterns. The patterns
can be detected in an image. Since the design and the size
are known, it is easy to estimate the six degrees of freedom
of the surface containing the AprilTag. This paper builds on
the framework proposed by Jha and Busso [11]. Their study
presented some of the challenges in head pose estimation in
a driving setting, where the head pose labels were obtained
with an AprilTag-based headband. A main limitation of the
headband used in their experiment is the occlusion of the up-
per part of the face, which interferes with current head pose
estimation algorithms. This study solves this limitation with
a cap structure that a subject wears in the back of the head,
avoiding interference with most sensors (depth, radar, RGB
cameras).

3. FI-CAP

Figure 1 shows the design of the proposed Fi-Cap, which
rely on 2D fiducial tags. The design aims to provide reliable
frame-by-frame head pose information without occluding the
face of the subjects. Since Fi-Cap is worn on the back of the
head, the design does not interfere with primary sensors used
for head pose estimation. Fi-Cap has 23 different AprilTags
that can be individually detected, providing a robust frame-
work to detect the orientation of the cap. A reliable estimation
can be obtained as long as few markers are visible. The sys-
tem requires an extra camera behind the subject to record the
position and orientation of the Fi-Cap. Since the detection of
the tags is purely from images, the setup is simple and robust.
This section explains the design of the Fi-Cap system.

3.1. Structure of Fi-Cap

The structure of the Fi-Cap system is designed to increase an-
gular resolution for pitch and yaw rotations. We achieve this
goal by creating a 3D structure with multiple fiducial mark-
ers along the vertical and horizontal directions. This structure
also facilitates reliable estimation for roll rotation. The de-
sign provides enough diversity such that multiple squares are
always visible for any reasonable head rotation.

The Fi-Cap is a 3D cap with 23 square faces (4cm x 4cm).
The angle between adjacent faces is 24.5 degrees. A unique
AprilTag of size 3.2cm x 3.2cm is placed at the center of each
of the 23 faces. The size of these fiducial markers are twice
as big as the AprilTags used on the headband introduced by
Jha and Busso [4]. The size is important as it facilitates the
location of the tags using automatic algorithms. An elastic
band is attached to fit the cap on the head.

3.2. Estimating Orientation of Fi-Cap from AprilTags

We obtain the orientation of the Fi-Cap from the AprilTags.
The first task is to detect the AprilTags. We use the algorithms
proposed by Olson [29]. The camera parameters and the true
size of the tag are used to estimate the position and orienta-
tion of each AprilTag with respect to the camera coordinate
system. Then, the shape of each tag can be rebuilt using the
estimate of the tag pose. We estimate the corner points of
each of the visible tags as shown in Figure 4 (see blue dots
on the corners of the tags), which we use to compute the pose
of the Fi-Cap from the RGB images. The corner points of
the tags are combined to obtain a single mesh of all the visi-
ble AprilTags, creating a partial shape of the Fi-Cap structure
from the image. This partial mesh is compared with a refer-
ence model of the Fi-Cap that has registered all the 92 existing
corners of the AprilTags. This reference is obtained with var-
ious frames from multiple angles under controlled conditions
(illumination, rotation, resolution). We rely on the Kabsch
algorithm [30] to obtain an initial estimate of the transforma-
tion between the pose of the Fi-Cap and the reference using
all the visible corners. Subsequently, unreliable points that do
not fit the original mesh are removed to obtain a better esti-
mate. This approach is similar to the iterative closest point
(ICP) algorithm. We repeat this process until the estimation
error of the visible corners is below a given threshold (notice
that this metric can be used as a reliability of the head pose
estimation). This approach provides the estimate of the po-
sition and orientation of the cap with respect to the reference
model.

3.3. Calibration

Once the position and orientation of the cap is estimated, we
estimate the transformation from the Fi-Cap to the actual head
pose (rotation matrix). The key goal in this calibration is to
determine the head pose that is considered frontal with respect
to our reference system (i.e. no rotation in any axis). This
process is conducted at the beginning of the recordings, since
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Fig. 2. Rendered images with different illuminations.

the actual placement of the Fi-Cap varies across subjects, and
even across sessions. The experimental evaluation shows that
the system can be calibrated with only a few seconds.

The calibration process can be conducted with different
approaches. For example, the subject can be asked to look
at a few points, directing his/her face toward target points.
Alternatively, we can rely on automatic head pose estimation
under good environment conditions. An advantage of the sec-
ond approach is that the estimation of the algorithm and Fi-
Cap are under the same reference system and can be directly
compared.

4. VALIDATION USING SIMULATIONS

Before evaluating the design in a real world setting, we ren-
der an animation of a virtual character wearing a design of
the Fi-Cap in Blender. Since we can program the orientation
of the head, we can estimate the robustness of the system as
we change the illumination and head orientation. We generate
videos at different image resolutions, changing the illumina-
tion. We estimate the head pose orientation of a driver, col-
lected in a previous study conducted by our laboratory. We
use the head pose sequence to render the animation (1,800
frames — 60s at 30 fps). The approach aims to explore the
performance of the system in realistic head orientations ob-
served during a naturalistic driving scenario.

Three different illumination conditions are used: neutral,
high and low illuminations. Figure 2 shows an example for
each condition. For neutral illumination, we place three lamps
around the head that provide uniform illumination (Fig. 2(a)).
For high illumination, we add three spotlights on the Fi-Cap,
generating highly saturated images (Fig. 2(b)). For low illu-
mination, we use a single light source in the front right corner
that causes shadow artifacts in the image (Fig. 2(c)). All the
videos are created in two resolutions: 960 x 540 pixels (540p)
and 1920 x 1080 pixels (1080p). We create six videos in total.

The rendered videos are the input of our Fi-Cap system,
which detects the orientation and position of the head of the
virtual character for each frame. The estimations are com-
pared with the actual orientation used to render the anima-
tions. The error between the measurements is obtained in
terms of the arccosine of the dot product of the two rotation
quaternions (¢s in Huynh [31]).

Alqr, g2) = arccos(|q1-ga|) (D

Table 1 reports the mean, median and 95 percentile error

Table 1. Estimation error of head pose in our simulations.

Data Mean Median | 95 percentile
error [°] | error[°] error[°]
540p neutral 1.17 1.18 1.95
540p high 1.45 1.61 2.10
540p low 1.17 0.95 2.87
1080p neutral 0.39 0.36 0.66
1080p high 1.12 1.15 1.46
1080p low 0.93 1.01 1.30

between the estimated and the provided angles. While the
mean and median shows the overall statistics of the error, the
95 percentile mark shows the worst case scenario, ignoring
outliers. The table shows that the best results are obtained us-
ing neutral illumination at 1080p resolution. The median er-
ror is only 0.36° and the 95 percentile error is 0.66°. We can
reliably estimate the head orientation for this condition. The
performance degrades for the neutral setting at lower resolu-
tion. We observe a median error of 1.18° and the 95 percentile
error is 1.95°. Shadows and illumination add extra challenges
in the estimation as some of the tags may not be visible in the
image. However, the results are still good. Even for the most
challenging cases, the 95 percentile error mark is less than 3°.
While we observe additional artifacts when looking at a real
world situations, this evaluation suggests that the framework
can reliably estimate the orientation of the head.

5. VALIDATION IN LABORATORY SETTING

We design a second experiment to validate the use of Fi-Caps
in a controlled laboratory setting. For this purpose, we use
a glass frame with a laser attached at the center. The head
movement can be tracked by locating the position at which
the laser beam is projected on a screen (similar to Rae and
Ritter [22]) (Fig. 4). We asked subjects to wear both the
laser frame and the Fi-Cap. We record the data with a cam-
era placed behind the subjects head, such that both the screen
and the Fi-Cap are visible in the camera view. We asked the
subjects to freely look at arbitrary locations on the screen.
The true location of the laser on the screen is estimated using
template matching. We only consider frames where the beam
location is accurately estimated. We collect data from 10 dif-
ferent subjects using a GoPro Hero6 camera. Each subject is
recorded for about 90 seconds. Among all these frames, the
laser beam was accurately detected in 21,683 frames.

For each subject, we need to calibrate the Fi-Cap system,
aligning the cap with the direction of the laser beam. We use
a portion of the data for this purpose and use the rest of the
data to test the accuracy of the system. We explore different
number of samples per session to find the ideal calibration of
the system, as explained in Section 3.3. We evaluate the first
10, 100 or 500 frames for the calibration, where the remain-
ing frames are used to evaluate the system. We also evaluate
selecting 100 random frames from all over the video, using
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Fig. 3. Histogram of head pose error when we calibrate the
system with the first 100 samples per session.

Table 2. Estimation error in head pose in laboratory settings.

Data Calibration | Mean Median | 95 percentile
error [°] | error [°] error [°]
First 10 4.93 3.8 11.64
First 100 3.64 2.86 8.64
First 500 3.34 2.86 7.03
Random 100 291 2.30 6.92

the remaining frames to calculate the error.

Table 2 shows the error for different calibration condi-
tions. We observe a slightly higher error compared to the
virtual environment. When using 10 samples, we observe
that the median error is 3.8° while the 95 percentile error is
11.64°. Increasing the number of samples for calibration de-
creases the error. The median error is less than 3° if we use
100 samples for calibration (less than four seconds). With
500 samples, there is no significant change in the median er-
ror, although the 95 percentile error is reduced. This result
implies that a few seconds of recording at the beginning is
enough for calibrating the position and orientation of the Fi-
Cap to the head pose. While calibrating with random samples
seem to give us a better results with only 2.3° median error,
this approach would require to have reference values avail-
able throughout the video which is unfeasible in real world
situations. Figure 3 shows the histogram of the head pose er-
rors when we calibrate the system with the first 100 samples
of each session. The error in most of the frames is below 5°.

6. NATURALISTIC DRIVING RECORDINGS

To evaluate Fi-Cap in a naturalistic driving environment, we
collect one hour and eight minutes of data of a driver wear-
ing the device. We collect the data with two GoPro cameras
(60fps), one facing the driver, and one behind the driver fac-
ing the tags. The data was collected during daytime in dif-
ferent roads including residential areas and highways. Out
of 246,643 frames, we are not able to detect any tag in only
445 frames, providing a head pose estimation in 99.8% of the
frames. We estimate the head pose with at least four tags in
244,581 frames (99.2%), suggesting that it is feasible to reli-
ably estimate the head position and orientation of the driver.

Fig. 4. Setting for the recordings. The laser is mounted on
glasses projecting a beam on the screen, which is automati-
cally tracked. The green point is the projection of the head
pose estimation using Fi-Cap.

This is a significant improvement over the headband proposed
by Jha and Busso [11].

7. CONCLUSIONS

This paper presented Fi-Cap, a framework that uses 2D fidu-
cial points to reliably estimate the position and orientation of
the head. The cap is worn in the back of the head, avoid-
ing occlusion with primary sensors. The 3D structure of the
Fi-Cap provides good resolution in the vertical and horizon-
tal directions. The cap has big tags that can be easily de-
tected using automatic algorithms. For reasonable head poses,
multiple tags are always visible providing enough informa-
tion to reconstruct the orientation of the design. Fi-Cap pro-
vides the infrastructure to collect large databases with con-
tinuous, frame-by-frame annotated head poses in diverse en-
vironments. In addition to our primary driving application,
Fi-Cap can also be helpful in collecting head pose data in var-
ious settings in human-human interactions, human-computer
interactions or human-robot interactions.

We plan to collect a database in naturalistic driving set-
tings, which can be helpful in designing robust head pose
estimation algorithms. Providing the annotated data will be
crucial to solve the challenges observed by current head pose
estimation tools in naturalistic driving scenarios. Maybe the
answer is to use other non-invasive sensors such as infrared,
radar or ultrasound. In each of these cases, the benchmark
head pose labels can be obtained with our Fi-Cap. Advances
in this area will lead to better driver behavior modeling for
ADAS, and better designs for smart systems for safety and
infotainment.

8. REFERENCES

[1] S.Jhaand C. Busso, “Probabilistic estimation of the driver’s gaze from
head orientation and position,” in IEEE International Conference on
Intelligent Transportation (ITSC), Yokohama, Japan, October 2017, pp.
1630-1635.



[2]

(3]

[4]

[3]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

C. Busso, Z. Deng, M. Grimm, U. Neumann, and S. Narayanan, “Rigid
head motion in expressive speech animation: Analysis and synthesis,”
IEEE Transactions on Audio, Speech and Language Processing, vol.
15, no. 3, pp. 1075-1086, March 2007.

B. Xiao, P. Georgiou, B. Baucom, and S.S. Narayanan, “Head motion
modeling for human behavior analysis in dyadic interaction,” [EEE
transactions on multimedia, vol. 17, no. 7, pp. 1107-1119, July 2015.

S. Jha and C. Busso, “Analyzing the relationship between head pose
and gaze to model driver visual attention,” in [EEE International
Conference on Intelligent Transportation Systems (ITSC 2016), Rio de
Janeiro, Brazil, November 2016, pp. 2157-2162.

A. Doshi and M.M. Trivedi, “On the roles of eye gaze and head dy-
namics in predicting driver’s intent to change lanes,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 3, no. 10, pp. 453-462,
September 2009.

C. Breazeal, “Toward sociable robots,” Robotics and autonomous sys-
tems, vol. 42, no. 3-4, pp. 167-175, March 2003.

X. Yu, J. Huang, S. Zhang, W. Yan, and D. N. Metaxas, ‘“Pose-free
facial landmark fitting via optimized part mixtures and cascaded de-
formable shape model,” in IEEE International Conference on Com-
puter Vision (ICCV 2013), Sydney, NSW, Australia, December 2013,
pp. 1944-1951.

S. O. Ba and J. M. Odobez, “Evaluation of multiple cue head pose
estimation algorithms in natural environements,” in /IEEE International
Conference on Multimedia and Expo (ICME 2005), Amsterdam, The
Netherlands, July 2005, pp. 1330-1333.

L.P. Morency, A. Rahimi, and T. Darrell, “Adaptive view-based ap-
pearance models,” in IEEE Computer Vision and Pattern Recognition
(CVPR 2003), Madison, WI, USA, June 2003, vol. 1, pp. 803-810.

C. Busso, M. Bulut, C.C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J.N.
Chang, S. Lee, and S.S. Narayanan, “IEMOCAP: Interactive emotional
dyadic motion capture database,” Journal of Language Resources and
Evaluation, vol. 42, no. 4, pp. 335-359, December 2008.

S. Jha and C. Busso, “Challenges in head pose estimation of drivers
in naturalistic recordings using existing tools,” in IEEE International
Conference on Intelligent Transportation (ITSC), Yokohama, Japan,
October 2017, pp. 1624-1629.

E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in
computer vision: A survey,” [EEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, no. 4, pp. 607-626, April 2009.

B. Czuprynski and A. Strupczewski, “High accuracy head pose track-
ing survey,” in International Conference on Active Media Technology
(AMT 2014), D. élzak, G. Schaefer, S.T. Vuong, and Y.S. Kim, Eds.,
vol. 8610 of Lecture Notes in Computer Science, pp. 407—420. Springer
Berlin Heidelberg, Warsaw, Poland, August 2014.

X. Xiong and F. De la Torre, “Supervised descent method and its ap-
plications to face alignment,” in /[EEE Conference on Computer Vision
and Pattern Recognition (CVPR 2013), Portland, OR, USA, June 2013,
pp- 532-539.

T. Baltrusaitis, P. Robinson, and L. P. Morency, “Constrained local neu-
ral fields for robust facial landmark detection in the wild,” in IEEE In-
ternational Conference on Computer Vision Workshops (ICCVW 2013),
Sydney, Australia, December 2013, pp. 354-361.

L.A.Jeni, J. F. Cohn, and T. Kanade, “Dense 3d face alignment from 2d
videos in real-time,” in IEEE International Conference on Automatic
Face and Gesture Recognition (FG 2015), Ljubljana, Slovenia, May
2015, pp. 1-8.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Schwarz, M. Haurilet, M. Martinez, and R. Stiefelhagen, “DriveA-
Head - a large-scale driver head pose dataset,” in IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW 2017),
Honolulu, HI, USA, July 2017, pp. 1165-1174.

Q. Wan, Y. Li, C. Li, and R. Pal, “Gesture recognition for smart home
applications using portable radar sensors,” in IEEE Engineering in
Medicine and Biology Society (EMBC 2014), Chicago, IL, USA, Au-
gust 2014, pp. 6414-6417.

A. Das, I. Tashev, and S. Mohammed, “Ultrasound based gesture
recognition,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2017), New Orleans, LA, USA, March
2017, pp. 406-410.

N. Gourier, D. Hall, and J.L. Crowley, “Estimating face orientation
from robust detection of salient facial structures,” in ICPR Inter-
national Workshop on Visual Observation of Deictic Gestures, Cam-
bridge, UK, August 2004, pp. 1-9.

A. Savran, N. Alyiiz, H. Dibeklioglu, O. Celiktutan, B. Gokberk,
B. Sankur, and L. Akarun, “Bosphorus database for 3D face analysis,”
in Biometrics and Identity Management (BiolD 2008), B. Schouten,
N.C. Juul, A. Drygajlo, and M. Tistarelli, Eds., vol. 5372 of Lecture
Notes in Computer Science, pp. 47-56. Springer Berlin Heidelberg,
Roskilde, Denmark, May 2008.

R. Rae and H.J. Ritter, “Recognition of human head orientation based
on artificial neural networks,” IEEE Transactions on Neural Networks,
vol. 9, no. 2, pp. 257-265, March 1998.

M. Ariz, J. Bengoechea, A. Villanueva, and R. Cabeza, “A novel 2D/3D
database with automatic face annotation for head tracking and pose es-
timation,” Computer Vision and Image Understanding, vol. 148, pp.
201-210, July 2016.

A. Tawari, S. Martin, and M. M. Trivedi, “Continuous head movement
estimator for driver assistance: Issues, algorithms, and on-road evalu-
ations,” IEEE Transactions on Intelligent Transportation Systems, vol.
15, no. 2, pp. 818-830, April 2014.

N. Sadoughi, Y. Liu, and C. Busso, “MSP-AVATAR corpus: Motion
capture recordings to study the role of discourse functions in the design
of intelligent virtual agents,” in Ist International Workshop on Un-
derstanding Human Activities through 3D Sensors (UHA3DS 2015),
Ljubljana, Slovenia, May 2015, pp. 1-6.

E. Murphy-Chutorian, A. Doshi, and M.M. Trivedi, “Head pose esti-
mation for driver assistance systems: A robust algorithm and experi-
mental evaluation,” in IEEE Intelligent Transportation Systems Con-
ference (ITSC 2007), Seattle, WA, USA, September-October 2007, pp.
709-714.

H. Kato and M. Billinghurst, “Marker tracking and HMD cali-
bration for a video-based augmented reality conferencing system,’
in IEEE/ACM International Workshop on Augmented Reality (IWAR
1999), San Francisco, CA, USA, August 1999, pp. 85-94.

M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in I[EEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2005), San Diego, CA, USA, June 2005, vol. 2, pp.
590-596.

E. Olson, “AprilTag: A robust and flexible visual fiducial system,”
in IEEE International Conference on Robotics and Automation (ICRA
2011), Shanghai, China, May 2011, pp. 3400-3407.

W. Kabsch, “A discussion of the solution for the best rotation to relate
two sets of vectors,” Acta Crystallographica Section A., vol. A34, no.
Part 5, pp. 827-828, September 1978.

D.Q. Huynh, “Metrics for 3D rotations: Comparison and analysis,”
Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155-
164, June 2009.



