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Figure 1: Examples of hazard driving scenarios that can trigger physiological reactions or unexpected maneuvers from the
drivers. The proposed unsupervised anomaly detection system aims to identify these events.

ABSTRACT
New developments in advanced driver assistance systems (ADAS)
can help drivers deal with risky driving maneuvers, preventing
potential hazard scenarios. A key challenge in these systems is to
determine when to intervene. While there are situations where the
needs for intervention or feedback is clear (e.g., lane departure), it
is often difficult to determine scenarios that deviate from normal
driving conditions. These scenarios can appear due to errors by the
drivers, presence of pedestrian or bicycles, or maneuvers from other
vehicles. We formulate this problem as a driving anomaly detection,
where the goal is to automatically identify cases that require inter-
vention. Towards addressing this challenging but important goal,
we propose a multimodal system that considers (1) physiological
signals from the driver, and (2) vehicle information obtained from
the controller area network (CAN) bus sensor. The system relies
on conditional generative adversarial networks (GAN) where the
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models are constrained by the signals previously observed. The dif-
ference of the scores in the discriminator between the predicted and
actual signals is used as a metric for detecting driving anomalies.
We collected and annotated a novel dataset for driving anomaly
detection tasks, which is used to validate our proposed models.
We present the analysis of the results, and perceptual evaluations
which demonstrate the discriminative power of this unsupervised
approach for detecting driving anomalies.
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1 INTRODUCTION
Over the past decade, vehicles equipped with advanced driver assis-
tance systems (ADAS) have made important safety improvements,
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enhancing the driving experience on the roads. Examples include
forward collision warning (FCW), intelligent speed advice (ISA), col-
lision avoidance system, and blind spot monitor. Studies have also
attempted to directly detect driver distractions [5, 10, 13], or detect
primary tasks need to safely complete a driving maneuver (e.g.,
mirror-checking actions [11]) Most ADAS functions get activated
when drivers fail to properly drive or react to changes in the driving
environment. A key step in these systems is to understand when to
intervene. New advances in ADAS will require to identify driving
anomalies that require intervention, such as the examples shown
in Figure 1.

In this work, we define driving anomalies as events that deviate
from expected driver behaviors that can lead to hazard situations.
Examples of a driver-related anomalies includes abrupt changes on
driving maneuvers, missing primary tasks required to complete a
driving maneuver (e.g., checking mirrors before turning [11, 12]),
and lack of awareness of the presence of objects, pedestrians, or
other vehicles. Examples of scene-related anomalies include hazard
actions from other vehicles, and unexpected changes on the road
that leads to hazard scenarios (e.g., constructions on the road). Our
aim is to automatically estimate driver anomaly using multimodal
sensors with unsupervised methods. In particular, this study con-
siders data from the driver (e.g., physiological signals), and from
the vehicle via the controller area network (CAN) bus (e.g., accelera-
tion, steering wheel position), leveraging the extensive naturalistic
driving data introduced in this study. This approach is appealing
since it not only does not require expensive and time-consuming
annotations, but also can inform of non-intuitive types of driving
anomalies that cannot be easily tabulated with pre-defined rules.

The key idea behind the proposed approach is to automatically
identify driving segments that deviate from normal or expected
patterns. Our formulation creates predictions conditioned on data
from previous segments. These predictions are compared with the
actual data, quantifying the deviations. We implement these ideas
with conditional generative adversarial networks (GANs). Our im-
plementation of conditional GAN creates predictions of the data for
the following six seconds, conditioned on the previous six seconds.
The discriminator and the generator are conditioned on the data
preceding the target window. We create a driving anomaly score by
leveraging the output layer of the discriminator. We present to the
discriminator the predicted samples creates by the generator and
the actual samples observed during the target six seconds. We esti-
mate the difference of the sigmoid outputs for both signals, using
this score as our driving anomaly metric. This metric increases its
value when the difference between the predicted and actual data
increases, indicating that something unexpected happened. This
unsupervised approach learns useful data representation without
the need of labeled data, identifying segments that deviate from
normal driving scenarios.

To evaluate the proposed approach, we collected 250 hours of
naturalistic urban driving data, which we refer to as driving anom-
aly dataset (DAD). This work uses a subset of 48 hours. We consider
three analyses to assess the performance of the proposed driver
anomaly detection approach. The first evaluation analyzes the dif-
ference between the distributions of our anomaly score for two
subsets of the data: the candidate and normal sets. The candidate
set includes segments annotated with avoid on-road pedestrian,

avoid on-road bicyclist, avoid parked vehicle, and traffic rule viola-
tion. The normal set are 400 randomly selected segments without
any annotation or driving maneuver. Our analysis reveals that the
anomaly scores for candidate segments are generally higher than
the anomaly scores for normal segments. The second evaluation
compares the 100 segments with the highest anomaly scores with
100 randomly selected segments. We compare the annotations pro-
vided in the dataset overlapping with these two sets. We observe
more risky events annotated over segments with high anomaly
scores. The third evaluation validates this result with perceptual
evaluations. We select the 40 segments with the highest anomaly
scores, and 40 segments randomly selected. We ask four evalua-
tors to watch these videos, judging their risk and familiarity levels.
The result reveals that videos with the highest anomaly scores are
perceived as more risky and less common than randomly selected
videos. Collectively, these results indicate that the proposed unsu-
pervised anomaly scores using conditional GAN are effective in
detecting driving recordings that deviate from normal recordings.

2 RELATEDWORK
2.1 Driving Anomaly Detection
Driving anomaly detection is an important problem. Studies have
proposed anomaly detection approaches in very specific problems
by setting thresholds. Malta et al.[16] proposed an anomaly de-
tection model based on brake pedal operations and thresholds on
the vehicle speed. They consider a hazardous scenario when the
pressure on the brake pedal was high while the mean velocity was
above a given threshold. Zhao et al.[24] detected aggressive driving
events using steering wheel information and acceleration informa-
tion collected from smartphones. They set acceleration thresholds
that depended on the steering wheel angles. The thresholds were
more sensitive when the steering wheel angle was high. These mod-
els based on predefined rules can only work well for simple cases.
When the driving environment is complex, however, they can over-
estimate the risk even when the drivers are properly controlling
the vehicle (e.g., changes in acceleration associated with overtaking
another vehicle), or underestimate risk when the thresholds are not
satisfied.

An alternative approach is to detect anomalies using machine-
learning algorithms. Selmanaj et al.[22] proposed an anomaly detec-
tion model based on two classifiers. As input, they used vertical and
horizontal accelerations of a motorcycle collected during naturalis-
tic driving recordings. The data are labeled as normal, irregular, and
hazard according to the road conditions (baseline road without any
specific feature, irregular roads with holes or speed bumps, hazard
roads with rough bumps or sharp turns). The first classifier dis-
criminates the samples as normal or anomaly. The second classifier
classifies the anomaly samples into two sets, irregular and hazard,
corresponding to the driving conditions. The results were validated
with simulated data. Chen et al.[1] proposed a SVM-based approach
to classify six different abnormal behaviors: weaving, swerving,
sideslipping, fast U-turn, turning with a wide radius and sudden
brakes. The study used the accelerometer and orientation sensors
of a smartphone. However, due to the complexity and diversity
of driving anomalies, designing an exhaustive classification-based
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solution that can precisely identify all kinds of driving anomaly
scenarios can be quite difficult and time-consuming.

Clustering based approaches have also been used for driving
anomaly detection. Zheng et al.[25] proposed an unsupervised clus-
tering method using accelerator sensor data of a smartphone. They
considered the outliers on the clustering map as the anomalies.
However, it is difficult to identify meaningful clusters as the dimen-
sion of the feature space increases.

2.2 Physiological Signals & Driving Maneuvers
Studies have shown the close connection between human’s physio-
logical signals and the autonomous nervous system [6, 23]. Changes
in our mental state, caused by stress, rage, or unexpected events, are
reflected in changes in our physiological signals. Haruyuki [6] used
the ratio between low and high frequency components of the heart
rate power spectrum to measure a person’s stress level. The study
of Timmons et al.[23] used data extracted from the eletrocardiogram
(ECG) and electrodermal activity (EDA) signals to detect changes in
arousal to monitor conflict between individuals.

Studies have analyzed the relationship between the drivers’ men-
tal state and driving maneuvers with physiological sensors. The
studies of Healey and Picard [7] and Nishigaki et al.[18] revealed
that driving can increase the drivers’ cognitive workload andmental
stress level. Following this direction, many studies have evaluated
the relationship between the driver’s physiological data and driving
maneuvers. Li et al. [14] used heart rate (HR) and breath rate (BR)
signals to connect the driver’s mental state with driving events.
Murphey et al. [15] designed a lane change detection model based
on physiological data.

These studies suggest that changes in physiological signals can
be effective cues to identify unexpected driving scenarios that in-
crease the driver’s stress levels. We expect to identify driver and
vehicle related anomalies by jointly modeling physiological signals
with data coming from the vehicle (e.g., CAN-Bus).

2.3 Generative Adversarial Networks
Our proposed models are based on a conditional GAN. GANs are
generative models that can create synthetic data that approximate
real samples [4]. This goal is achieved by playing an adversarial
game between a generative model G and a discriminative model D.
During the training procedure, D is trained to discriminate whether
a sample comes from real data or from samples generated by G. G
is trained to generate plausible samples from noise to confuse D.
This adversarial game leads the generator to learn the distribution
of the samples that are being generated. An interesting extension
of this framework is conditional GANs [2, 8], where the models are
also constrained by a given variable that is provided as an input.
By adding some conditions as inputs, G can generate fake samples
with specific conditions or characteristics rather than a generic
sample from a noise distribution.

Li et al.[9] applied GANs on anomaly detection in signal domain
for system security issues. They trained a GANs-based model to
learn the distribution of signals from sensors and actuators with
a Cyber-Physical System working under normal conditions. They
used the model to differentiate between normal and abnormal sig-
nals, which indicate potential attacked situations.

Some successful examples of conditional GANs applied to dif-
ferent problems include the work of Dai et al.[2], Sadoughi and
Busso [21], and Isola et al.[8]. Dai et al.[2] leveraged conditional
GAN to generate diverse captions from images. The models were
conditioned on the type of image (e.g., drawings versus real pic-
tures). Sadoughi and Busso [21] created speech-driven models for
lip movement generation using conditional GAN, which were con-
strained by the acoustic features. Isola et al.[8] used conditional
GAN to generate images with a given style. The condition in this
implementation was a picture with the target style. To the best of
our knowledge, our paper is the first study that uses conditional
GAN as an unsupervised solution for driving anomaly detection.

3 DRIVING ANOMALY DATASET
This study introduces the driving anomaly dataset (DAD). We ob-
tained 250 hours of naturalistic driving data. Four drivers collected
the data using a Honda Accord. During the data collection, we
recorded the driving situation by placing cameras looking at the
road and the driver. Those videos are for annotation purposes and
are not used for anomaly detection in this work. We also recorded
data from the vehicle controller area network (CAN)-bus that pro-
vides various signals from the vehicle including throttle angle, brake
pressure, steering angle, yaw rate and speed at 100 Hz. The phys-
iological signals from the drivers were recorded with wearable
devices (Zephyer BioHarness 3 chestband, and Empatica E4). These
sensors provide ECG (250 Hz), respiration wave (25 Hz) and skin
conductivity (4 Hz) signals. We extract the drivers’ heart rate (HR),
breath rate (BR), and electrodermal activity (EDA) from these physi-
ological signals. All the sensor signals are synchronized at 30 Hz for
convenience. In this paper, we analyze 46 sessions of naturalistic
urban driving recordings with a total duration of around 48 hours,
which are the sessions that have been currently annotated. We split
the 48 hours of driving data into two partitions, using 42 hours
for training, and six hours for testing the proposed unsupervised
framework.

The DAD is a new completed multimodal dataset and it is used
for research purpose for the first time. Unlike others driving dataset
such as the KITTI corpus [3] or the HDD corpus [17, 20], our dataset
explicitly annotates traffic rule-violations for anomaly detection
research purposes. The data was collected in a city in Asia by a
local company. By looking into the videos, we find that the traffic
conditions in the DAD are much more complicated than the traffic
conditions observed in the KITTI corpus (Europe) or the HDD
corpus (San Francisco Bay Area, USA) (e.g., more wild drivers and
more pedestrians and bicyclists who ignore the traffic rules). These
above-mentioned advantages of the DAD motivate us to apply our
driving anomaly detection models on this novel corpus.

We manually annotated the corpus with relevant driving events
using the software ELAN (Fig. 2). We group some of these anno-
tations to evaluate the models. Table 1 lists the sets. The first set
corresponds to the candidate set, which includes annotations with
hazard scenarios, and traffic violations. We expect that these seg-
ments should be more anomalous than other driving segments. The
second set is the maneuver set, which includes all the annotations
related to driving maneuvers. The third set is the normal set, which
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Figure 2: Data interface with the annotations of the recordings using the software ELAN. The physiological signals, CAN-bus
data, and annotations are synchronized with the video recording, which shows the road view from the car.

Table 1: Sets considered in this study to evaluate the pro-
posed anomaly detection models. The candidate set is ex-
pected to be more anomalous than the other sets.

Sets Annotations
Candidate Avoid on-road pedestrian; Avoid pedestrian

near ego-lane; Avoid on-road bicyclist; Avoid
bicyclist near ego-lane; Avoid on-road motorcy-
clist; Avoid parked vehicle; traffic rule violation

Maneuver Intersection passing; Left turn; Right turn; Left
lane change; Right lane change; Crosswalk pass-
ing; U-turn; Left lane branch; Right lane branch;
Merge; Stop for red light; Stop for congestion

Normal No annotations during the segments

includes driving recordings without any annotations. We use this
set as a baseline describing normal driving conditions.

4 PROPOSED CONDITIONAL GAN
This study proposes the use of conditional GAN for driving anomaly
detection using physiological and CAN-Bus data. We use HR, BR,
and EDA as the physiological signals, and speed, yaw, pedal angle,
brake pressure, steer angle, and steer speed as the CAN-Bus signals.
Our formulation is an unsupervised framework that aims to quan-
tify the deviations from the expected driving behaviors. The key
idea of the formulation is to predict the vehicle and physiological
signals using previous data. These predictions are compared to the
actual signals observed during the analysis window. The proposed
driving anomaly metric quantifies deviations from the predicted

signals, creating a powerful measure to identify unexpected events,
which according to our definition, correspond to driving anomalies.
A key step in our formulation is to generate the expected vehicle
and physiological data. A state-of-the-art generative framework
is GAN [4], which has been successfully used in several domains
(Sec. 2.3). A conventional GAN uses a noise input to generate the
output. For our formulation, we need to constrain the generative
model by the data previously observed. This can be achieved with
conditional GAN.

Figure 3(a) shows the proposed conditional GAN. The input of
the generator (G) is the signals from the previous analysis window
and random noise. Its output is the prediction of the signals for the
next analysis window. The discriminator (D) takes either the gener-
ated or observed signals. Instead of directly using the raw data as
input to the generator, we extract statistic features from the data to
capture the key aspects of the signals during the analysis window.
These statistics are used as features for D. We extract four time
domain features for each of the CAN bus data (i.e., maximum, min-
imum, mean, and standard deviation). For the physiological data,
we also extract these temporal statistics, in addition to frequency
domain features, corresponding to the energy in the frequency
domain covering the following bands: [0-0.04 Hz], [0.04-0.15 Hz],
[0.15-0.5 Hz], [0.5-4 Hz], and [4-20 Hz]. The output of D is a dis-
criminative score between (0,1), estimating the probability (S) that
the input comes from real signals (S = 1) or fake samples generated
by G (S = 0).

Figure 3(b) illustrates how we estimate the driving anomaly
score. First, the generator uses the previous analysis window as a
constraint, creating the predicted signal (generator is not shown in
Fig. 3(b)). Then, we extract the temporal and frequency statistics
from the predicted and actual signals. We input these features into
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Figure 3: Unsupervised approach using conditional GAN to
identify driving anomaly events. The predicted signals are
contrasted with the actual signals. Our approach quantifies
these differences using its discriminator.

D to obtain the discriminative score SF for the predicted signals
(fake), and the discriminative score SR for the actual signals (real).
We define our anomaly scoremanomaly by estimating the difference
between SF and SR .

We implement this framework as follows. The generator is de-
signed with a five-layer fully connected deep neural network (DNN).
The size of the input is 360, where 180 correspond to the first 6-
second data, and the remainder 180 correspond to random noise.
The five fully connected layers have 180, 60, 18, 60, and 180 nodes,
respectively. We implement the discriminator with a four-layer
fully connected DNN. The input layer of the discriminator has 51
nodes, where 27 are for the three physiological data, and 24 are
for the six CAN-bus data. The four hidden layers are implemented
with 51, 34, 17, and 6 nodes, respectively. The output layer has 1
nodes, activated by a Sigmoid function. During training, D and
G are trained iteratively for 20 epochs, where the parameters are
updated using the ADAM optimizer. All the layers before the output
layer use the exponential linear unit (ELU) function. The activation
function for the output layer of D is the sigmoid function. The
analysis window is set to six seconds (i.e., we use six seconds of
data to predict the following six seconds of data). Physiological

Figure 4: Distribution of anomaly scores manomaly for seg-
ments from the normal and candidate set. The values are
higher for the samples in the candidate set.

signals do not respond very quickly so it is important to keep the
analysis window long enough to capture meaningful patterns.

5 EXPERIMENTAL EVALUATION
This section assesses the benefits of the proposed unsupervised
approach with controlled evaluations. The first analysis compares
the distribution of the anomaly scores for segments in the candidate
and normal sets (Sec. 5.1). The second analysis evaluates the under-
lying annotations in the DAD overlapping with the segments with
high anomaly scores (Sec. 5.2). These results are compared with
the annotations of segments selected at random. The third analysis
provides perceptual evaluations for segments with high anomaly
score and randomly selected segments (Sec. 5.3). Finally, we repli-
cate some of the results using only CAN-Bus data to highlight the
benefits of using physiological data 5.4.

5.1 Distribution of Anomaly Scores
The first part of the analysis compares the distributions of the
anomaly score for segments in the candidate and normal sets. As
explained in Section 3, the segments on the candidate set includes
events that are expected to be anomalous (Table 1). The normal
set includes segments without any annotation. We consider 400 12-
second recordings from each set, using the first six second window
to predict the data of the last 6 second windows. Figure 4 shows the
distribution of the anomaly scores for both sets. The figure clearly
shows that the anomaly scores for segments in the candidate set are
often higher than scores for normal segments. This result validates
the proposed unsupervised approach, which learns from the data
to identify hazard scenarios. Figure 5 shows four examples where
our framework assigned high anomaly scores to the videos.

Analyzing cases with unexpected results can provide insights to
understand the performance of the system. In Figure 4, we notice
that aroundmanomaly = 0.25, which is a relatively high anomaly
score, there are some segments from the normal set. In some cases,
changes in physiological signals not related to the driving task can
trigger our models to predict a high anomaly score. In a segment in
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Figure 5: Example of events identified as anomalous. These
frames are extracted from videos with high anomaly scores.

Table 2: Assignment of the top 100 events into the normal,
candidate, andmaneuver sets (Table 1). The table also shows
the corresponding assignment for 100 random segments.
The assignment is implemented by considering the annota-
tions overlapping with these events.

Events Normal Candidate Maneuver
Top 100 16 9 75

Random 100 59 3 38

the normal set with a high anomaly score, the driver was properly
controlling the car, but its BR signal significantly changed from
the first six seconds to the last six seconds. This change may be
completely unrelated to the driving task (e.g., changing position
or suddenly remembering something). While physiological data
provide useful information, it is important to remember that not
all the physiological changes can be attributed to the driving task.

Some of the recordings in the candidate sets have low anomaly
scores. In some cases, on-road bicyclists or pedestrians have been
riding or walking on the side of the road for a while, so the drivers
had time to prepare, resulting in slight fluctuations on their physi-
ological signals. We can argue that it was the correct decision to
assign low anomaly scores to these cases.

5.2 Annotations Overlapping with Segments
The second part of the evaluation explores the annotations provided
in the DAD that overlap with recordings with high anomaly scores.
We select the 100 recordings with the highest anomaly scores, de-
noting this group as Top 100. For comparison, we randomly select
100 segments, denoting this group as Random 100. Depending on
the types of annotations spanning the video, these segments are
assigned to the normal (i.e., no annotation), candidate (i.e., risky
events), or maneuver (i.e., include a driving maneuver) sets.

Table 2 shows the results. Most of the recordings in the top
100 group are included in either the candidate or maneuver set.

Figure 6: GUI for the perceptual evaluation. The raters are
asked to answer the following two questions about the driv-
ing scenario, after watching the 12-secs. video.

Only 16% of the videos are in the normal set. In contrast, 59% of
the recordings on the random 100 group are in the normal group.
These results indicate that our supervised method is effective in
selecting cases of interest.

5.3 Perceptual Evaluation of Selected Segments
The last analysis evaluates the selected videos with perceptual
evaluations. Since perceptual evaluations are expensive and time-
consuming, we only considered the top 40 segments with the high-
est anomaly scores. Each recording is 12 seconds long to provide
enough context, including the first six seconds used to predict
the signals, and last six seconds. As a baseline, we also evaluated
40 12-second videos that were randomly selected. We asked four
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raters to watch the videos, where the camera was placed record-
ing the roads. Each rater evaluated 20 videos. We asked questions
to assess degree of risk and familiarity of the driving conditions
shown in the videos: how risky is the driving maneuver in the video?
(safe maneuver; slightly risky maneuver; risky maneuver; very risky
maneuver) and how often do you see similar driving maneuver on
the roads? (never; almost never; sometimes; quite often; regularly).
Figure 6 shows the graphical user interface (GUI) used for the eval-
uation.

Very Risky Risky Slightly Risky Safe
0

5

10

15

20

25

30

0

7

16 17

0 0

7

33Top 40
Random 40

(a) How risky is the driving maneuver in the video?

Never Almost Never Sometimes Quiet Often Regularly
0

5

10

15

20

25

30

0

6

13

4

17

0 0 1

7

32Top 40
Random 40

(b) How often do you see similar driving maneuver on the roads?

Figure 7: Results of the perceptual evaluation to assess the
degree of risk and familiarity of the videos. Thefigure shows
the results for the top 40 segments with the highest anomaly
scores, and 40 segments randomly selected.

Figure 7 shows the results of the perceptual evaluation for the
two questions. The driving conditions in segments with higher
anomaly scores are remarkably more risky and happen less fre-
quently on the roads. For the assessment of risk level, Figure 7(a)
shows that 17.5% of the videos identified by our method were la-
beled as risky. The evaluators perceived some degree of risk in
57.5% of the videos. In contrast, 82.5% of the videos selected at ran-
dom were perceived as safe. The results in Figure 7(a) show similar

Figure 8: Distribution of anomaly scores manomaly for seg-
ments from the normal and candidate sets. The model only
considers features extracted from CAN-Bus data. The over-
lap between the normal and candidate sets increases, high-
lighting the benefits of using physiological data.

patterns for the assessment of familiarity. The evaluators indicated
that 15% of the videos selected by our models almost never happen
on the roads. Only 42.5% of the selected videos were labeled as
driving events that are regularly observed on the roads. In contrast,
80% of the videos selected at random were labeled as events that are
regularly observed on the roads. The results of the perceptual eval-
uation clearly indicate that the proposed unsupervised approach is
able to identify anomaly events from the data without defining any
rule either manually or through supervised learning.

5.4 Role of Physiological Data
The proposed model relies on physiological and CAN-Bus data.
We have shown that physiological data can discriminate driving
maneuvers [19]. To evaluate whether physiological data are also
useful for anomaly driving detection, we reimplemented the net-
work using only CAN-Bus features. In particular, we consider the
results with the distribution of anomaly scores in Figure 4 (Sec. 5.1)
and the assignment of the top 100 events into the normal, candidate,
and maneuver sets in Table 2 (Sec. 5.2).

Figure 8 shows that using only CAN-Bus features increases the
overlap between the distributions of the normal and candidate
sets. With CAN-Bus and physiological features, the modes of the
distributions are 0.194 (normal) and 0.248 (candidate). The separa-
tion between the modes is 0.054. With only CAN-Bus features, the
modes of the distributions are 0.174 (normal) and 0.194 (candidate).
The separation between modes is only 0.02.

Table 3 shows that the top 100 set includes more cases labeled as
“normal” when we only use CAN-Bus features (Normal: 16→ 31;
Candidate: 9 → 6; Maneuver: 75 → 53). These results illustrate
that the discrimination power of the model is improved by adding
physiological features. As a particular case, we describe the scenario
displayed on Fig 6. The driver slowed down the vehicle to turn right,
but a black car on the right lane rushed forward from the right
rear. This sudden change did not cause a big change on CAN-Bus
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Table 3: Assignment of the top 100 events into the nor-
mal, candidate, and maneuver sets. The table also shows the
corresponding assignment for 100 random segments. The
model was implemented with only CAN-Bus features.

Events Normal Candidate Maneuver
Top 100 31 6 53

Random 100 57 4 39

data, but caused a noticeable drop on the driver’s breath rate. The
anomaly score was 0.231 with physiological features, and 0.208
without physiological features.

6 CONCLUSIONS
This study proposed a multimodal unsupervised driving anomaly
detection system using a conditional GAN. The proposed approach
creates predictions of physiological signals and CAN-Bus data,
conditioning the models by the previous analysis window. The
predictions are contrasted with the actual data quantifying the
differences. This approach is implemented by subtracting the scores
provided by the discriminator when the input features are either
the actual or predicted data. This approach is effective in detecting
events that deviates from the predicted driving behaviors, creating
solutions that do not depend on predefined rules set with either
ad-hoc thresholds or supervised methods.

The proposed model was trained and evaluated on a novel driv-
ing dataset (DAD) using 48 hours of naturalistic recordings. By
considering the annotations provided in the dataset, we observed
that the proposed anomaly scores are higher for recordings an-
notated with risky events than for the recordings without any
annotation. Our perceptual evaluation demonstrated that the pro-
posed unsupervised method is able to identify recordings that are
perceived as riskier and more uncommon than randomly selected
driving recordings. By considering the physiological and CAN-Bus
data, the system can detect driving anomalies signaled by changes
in the driver’s mental state or unexpected driving maneuvers.

A limitation of this study is that our detection algorithm can
identify anomalies only when the driver reacts to them. Our ap-
proach cannot detect anomalies that were missed by the driver (i.e.,
when a driver did not react to events or objects affecting the driving
conditions, neither physically nor mentally). Another important
area of improvement is the normalization of physiological data.
Physiological responses vary from drivers to drivers, depending
on their expertise, habits and driving conditions. In this study, we
normalized the physiology data per session to compensate for the
differences between drivers and road situations. However, we will
need to develop an algorithm that normalize the driver’s physiolog-
ical data to apply the proposed approach in practical applications.

This study opens interesting research opportunities to improve
the proposed approach. We only considered physiological and CAN-
Bus data. In addition, we can also incorporate other information
such as the results from vision-based object detection systems ap-
plied to the road. Another potential modification of the system
is to consider conditional GANs implemented with recurrent neu-
ral networks (RNNs) to capture temporal information. The current

approach is implemented with fully connected layers, where the
features of the discriminator are statistics from physiological and
CAN-Bus data. Instead, we can also implement the system with
convolutional neural networks (CNNs) to obtain better feature rep-
resentations learned directly from the raw signal.
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