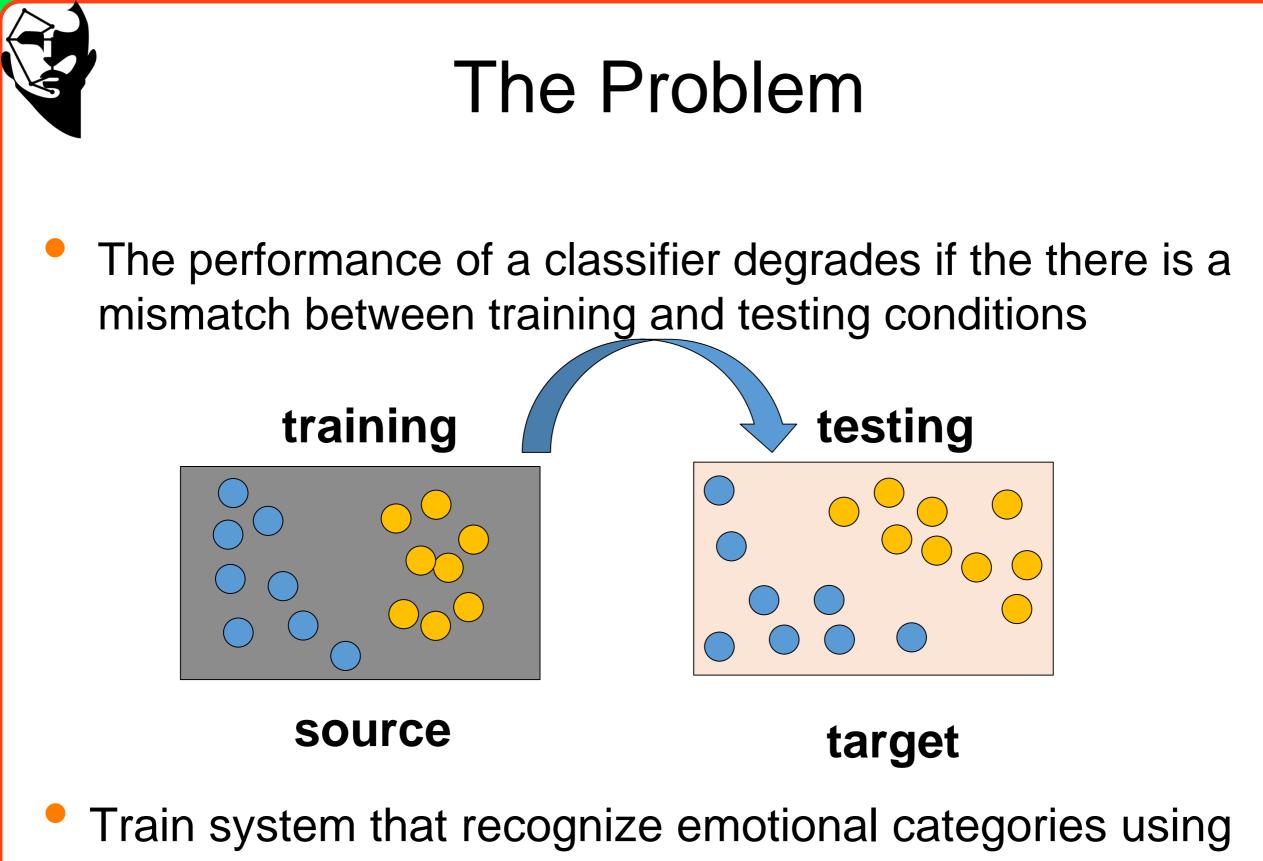


ENSEMBLE FEATURE SELECTION FOR DOMAIN ADAPTATION IN SPEECH EMOTION RECOGNITION

Mohammed Abdelwahab and Carlos Busso

Multimodal Signal Processing (MSP) lab The University of Texas at Dallas Erik Jonsson School of Engineering and Computer Science

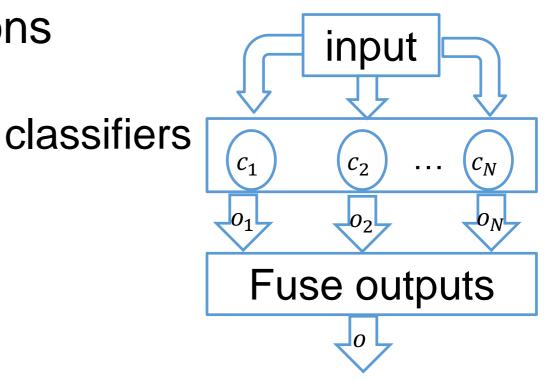
March 2017



limited labeled data

Why Ensembles?

- Ensembles perform well in extreme scenarios with large or limited amounts of data
- The ensemble performance is better than its best classifier, under certain conditions
- Ensembles diversity
 - Using different data partitions
 - Using different sets of features
 - Using different classifier models
- Ensembles may mitigate the performance degradation

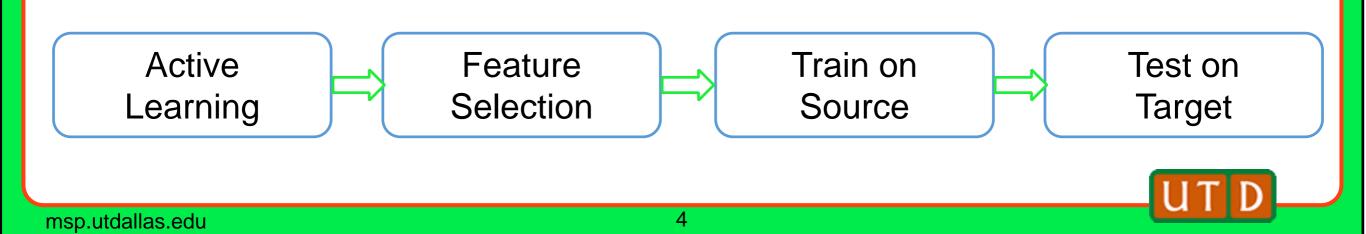


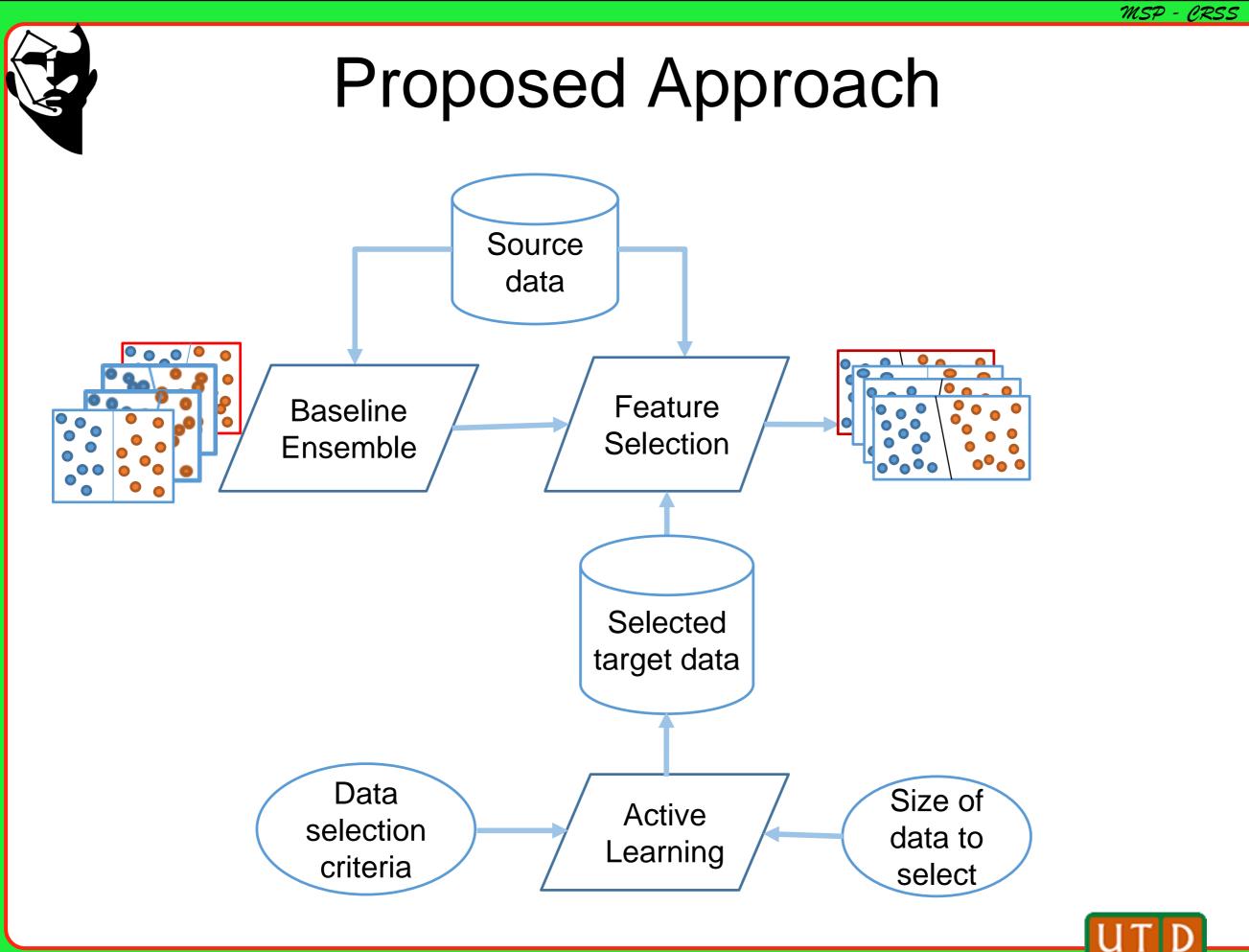
Related Work

The main approaches to modify ensembles tested on new data

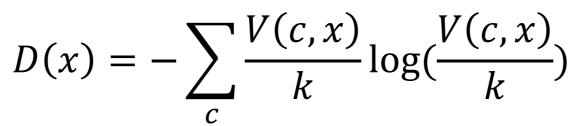
- Weighting the ensemble classifiers
- Weighting or resampling the source data to match the target distribution

Our approach focuses on selecting a feature space that maximizes performance on the new data





Data Selection Active Learning



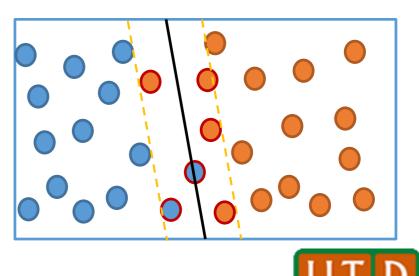
k is the number of classifiers in ensemble

V(c, x) is the number of classifiers assigning class c to sample x.

Uncertainty Sampling

Select the samples the classifier has the least confidence in.

Random Sampling (passive learning)



CRSS

Size c

data to

Selected target data

Active

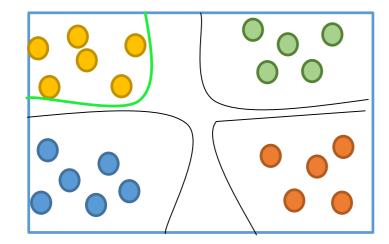
Learning

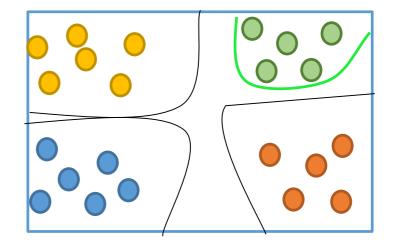
- The goal of the proposed approach
 - Minimize the mismatch between training and testing
 - Preserve the diversity of the ensemble
- This is achieved by:
 - Biasing different classifiers towards different classes
 - Eliminating overlap between feature sets used by the classifiers
 - Feature selection is conducted by maximizing the performance over the newly annotated data from the target domain

• We used F_2 score to bias the classifier towards a class

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 * precision + recall}$$

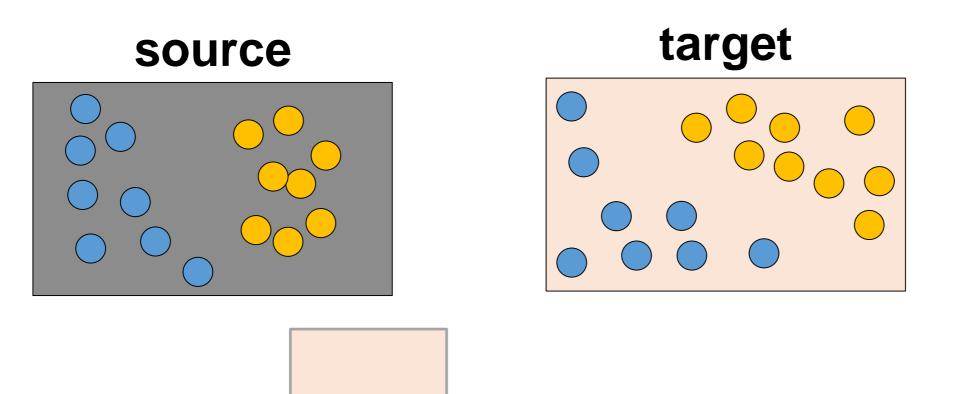
The classifier tries to maximize the F_2 of the selected class





- Classifiers take turns selecting features
- Once a feature is selected, it is no longer available for the remaining classifiers

Feature selection is conducted by maximizing the performance over the newly annotated data from the target domain



Databases

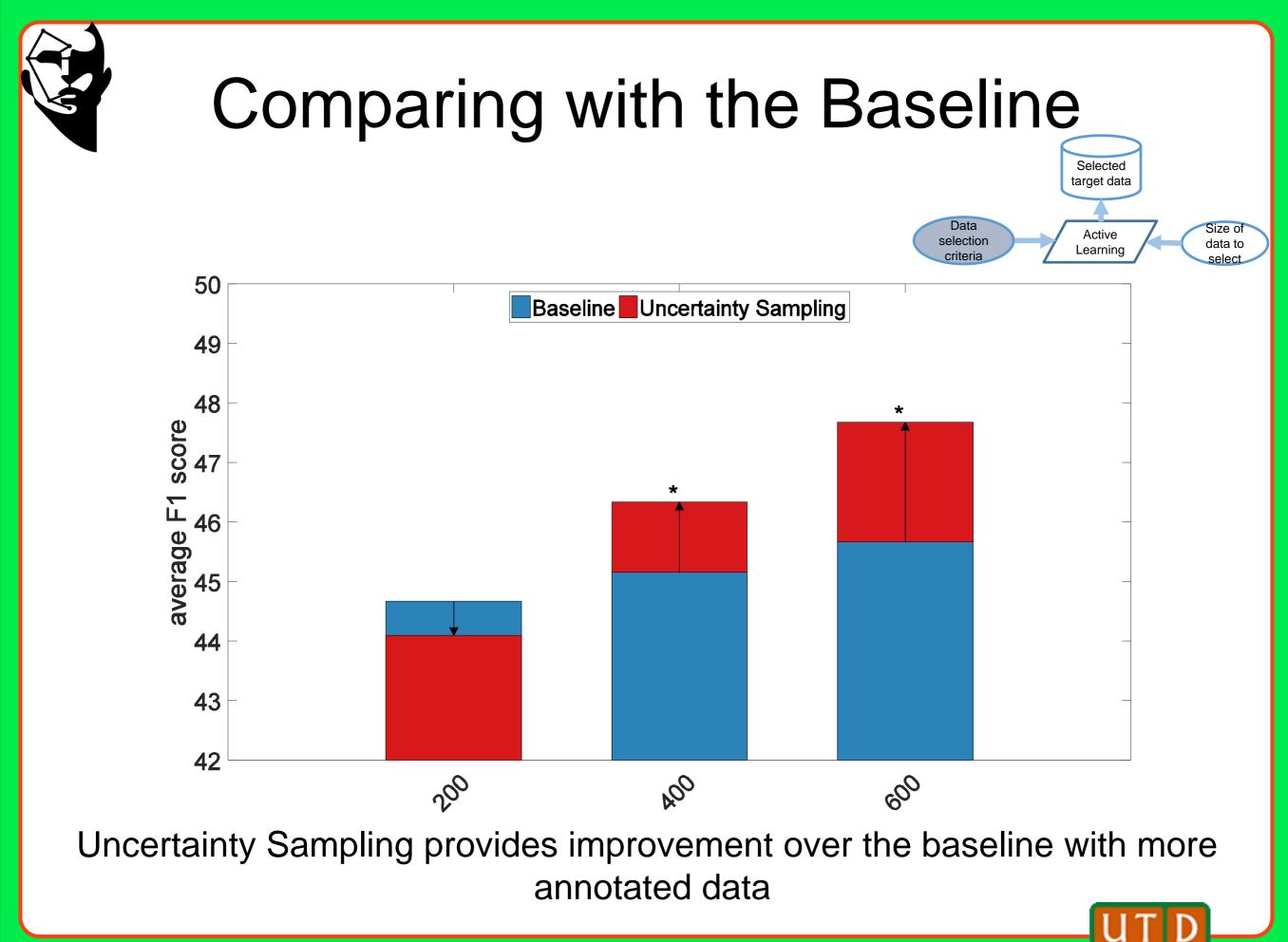
- Train: USC-IEMOCAP
 - 12 hours of conversational recordings from 10 actors in dyadic sessions
 - Sessions consists of emotional scripts as well as improvised interactions
 - Turns are annotated by 3 evaluators into categorical emotions
- <u>Test:</u> MSP-IMPROV
 - Dyadic interaction sessions from 12 actors
 - Contains 8,438 turns including improvised natural interactions
 - Turns are labeled into four categorical emotions as well as dimensional attribute scores by at least 5 annotators

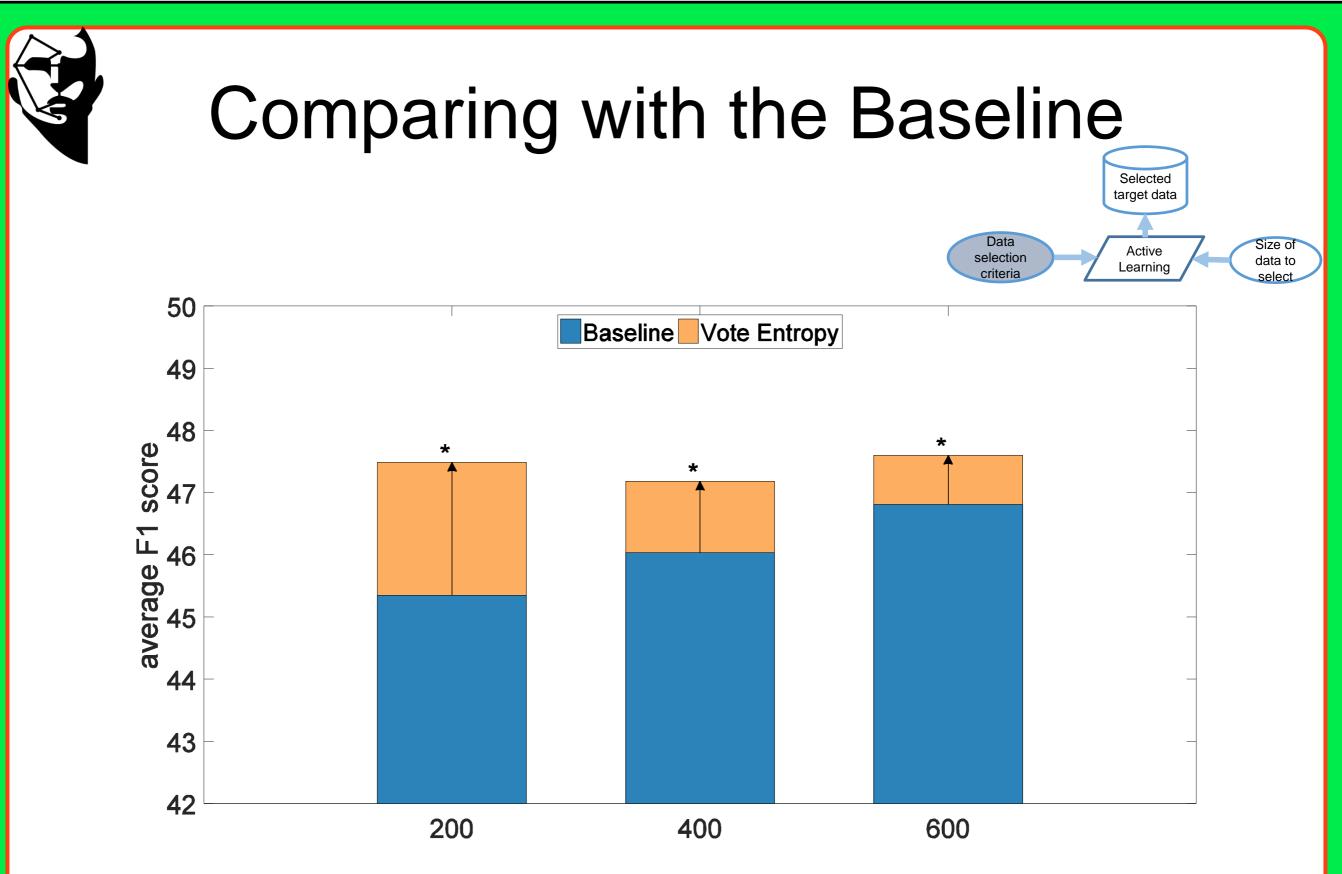
IEMOCAP

MSP-IMPROV

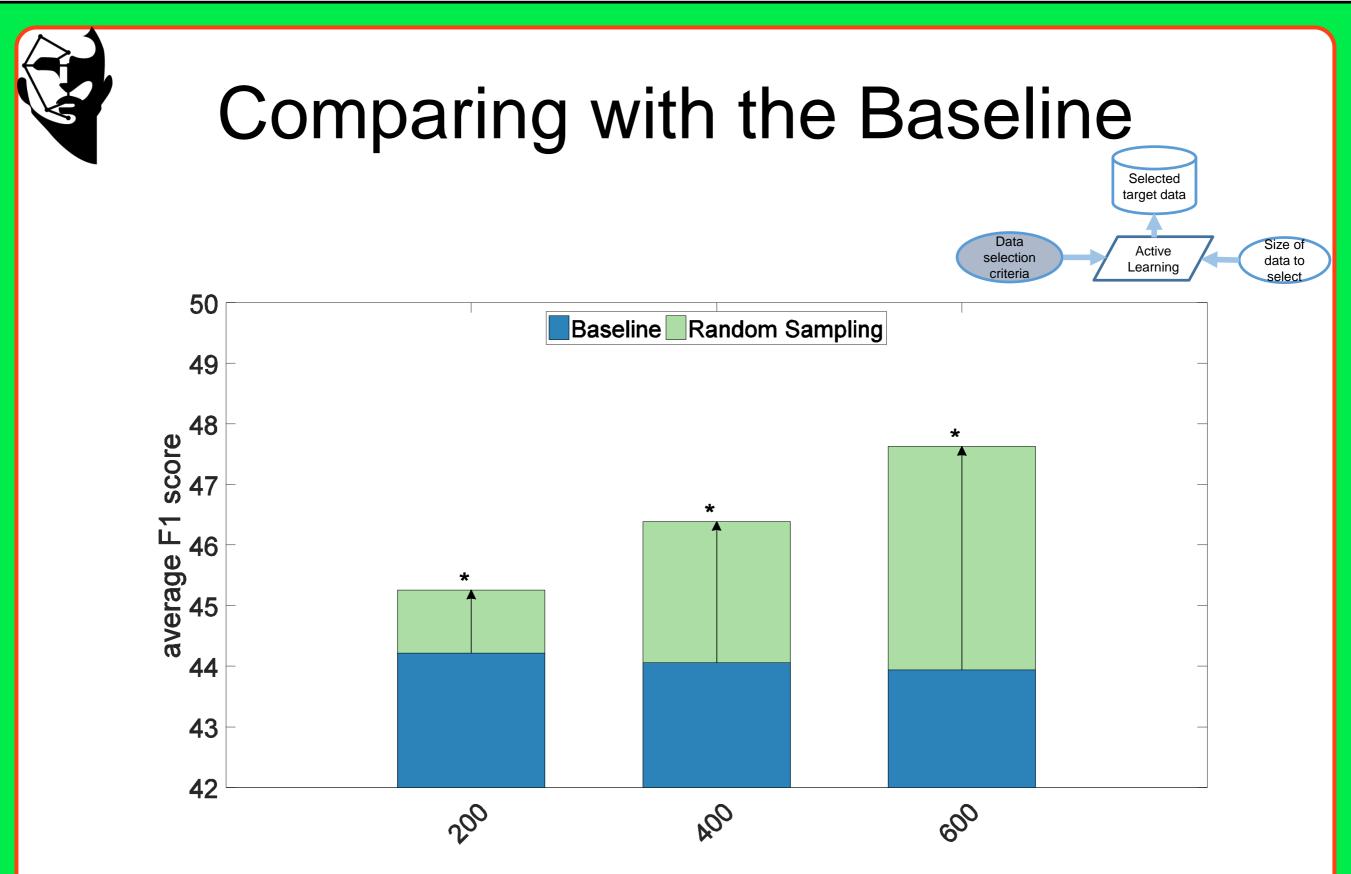
Experimental Settings

- Ensemble is composed of 40 SVM Classifiers
- Four class balanced classification problem
 - Angry, happy, sad, neutral
 - Random Under-sampling
- Classifier is trained on USC-IEMOCAP and tested on MSP-IMPROV
- Baseline is an ensemble of classifiers using features optimized on the source domain
- We used Interspeech 2013 feature set
 - Correlation Feature Selection 6,373 > 3,000
 - Each classifier selects 40 features



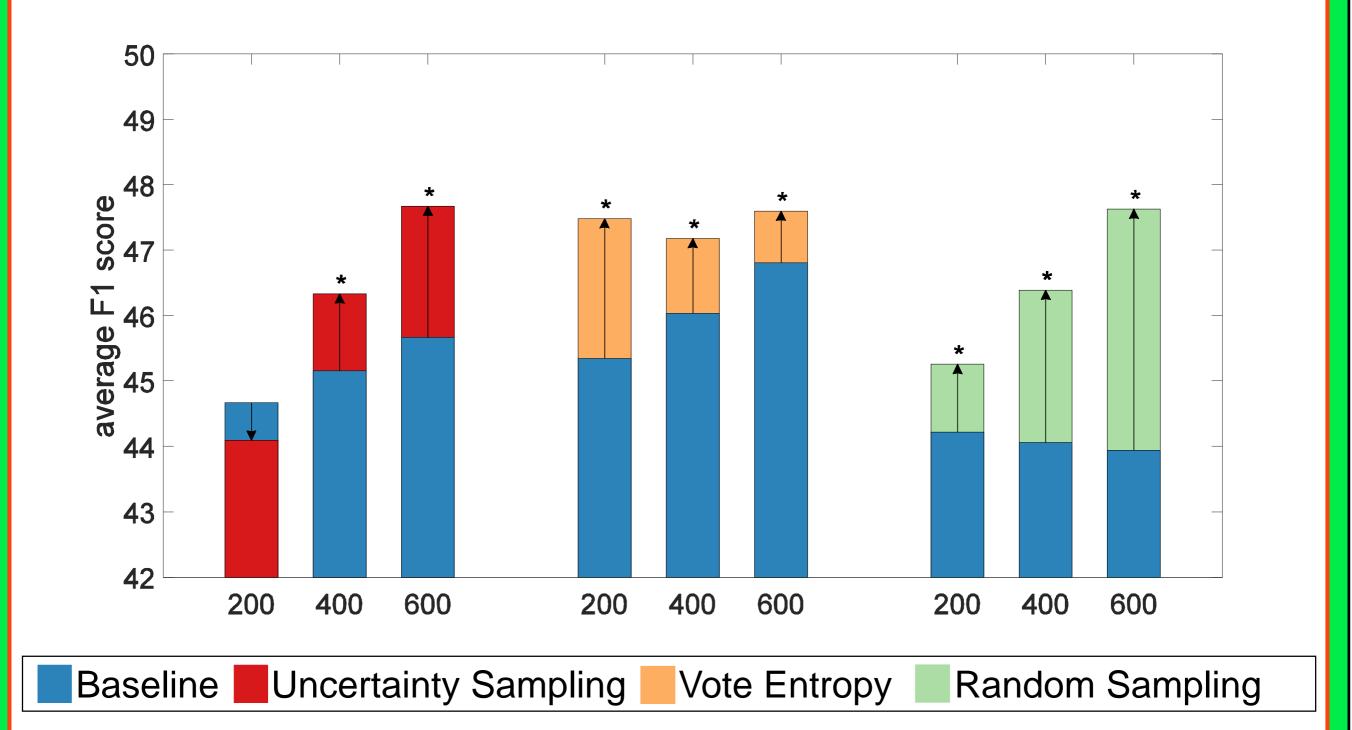


Vote Entropy performance gap drops as more data is selected

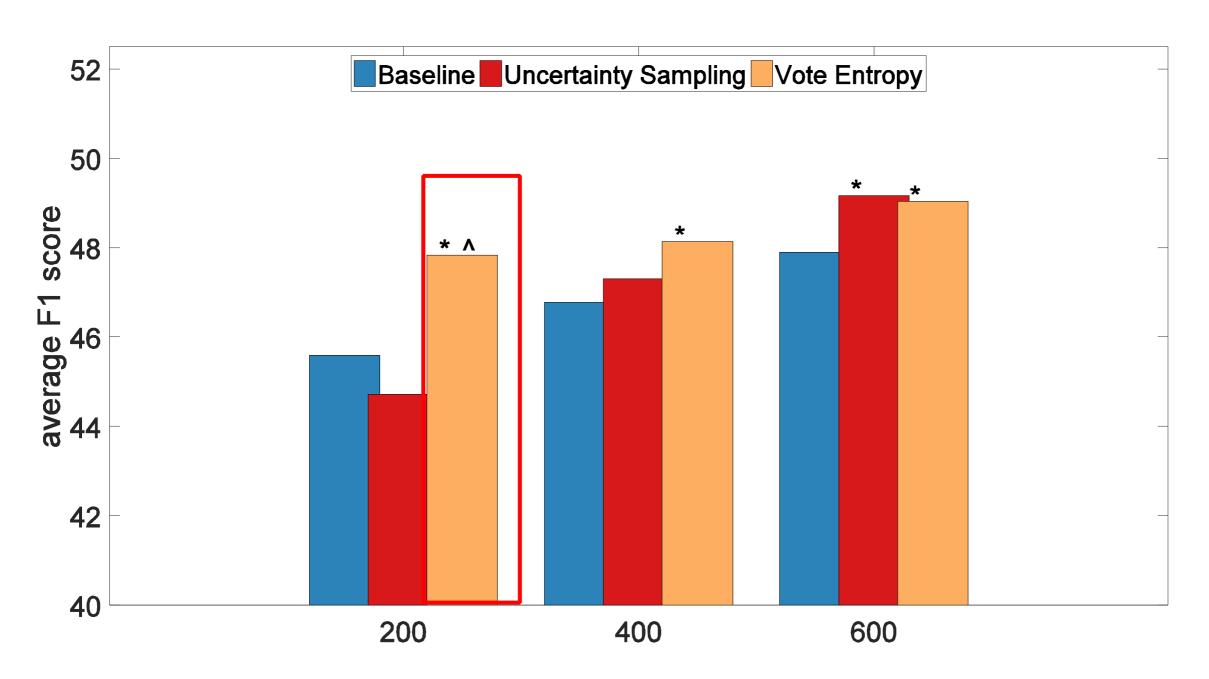


Random Sampling performance gap increases as more data is selected

Comparing with the Baseline

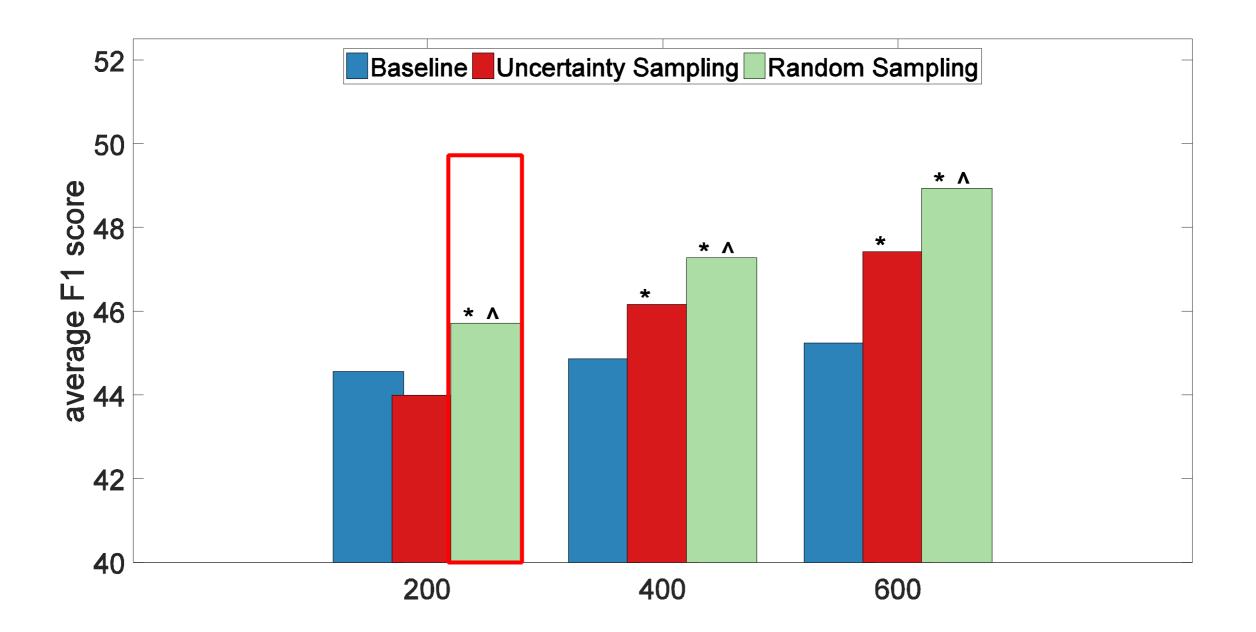


Comparing Data Selection Criteria



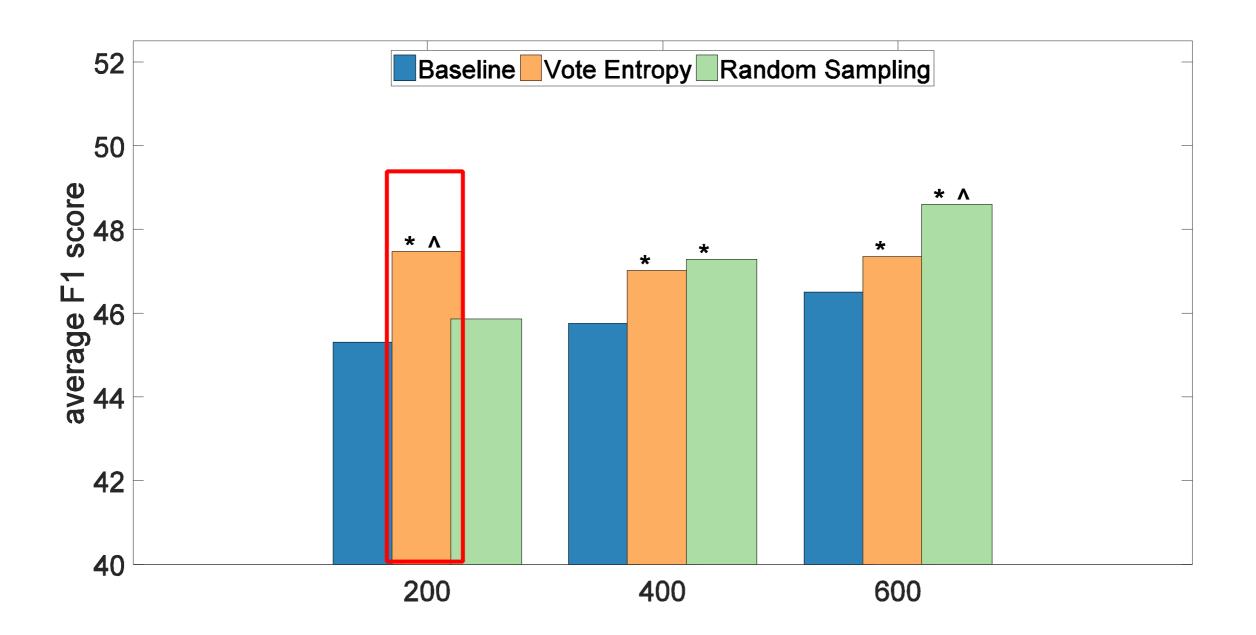
Vote Entropy outperforms for small data size Uncertainty Sampling catches up as we increase the size

Comparing Data Selection Criteria



Random sampling outperforms in all data sizes

Comparing Data Selection Criteria



Vote Entropy outperforms for small data size Random Sampling outperforms for larger data size

Conclusions

- Significant improvement by performing feature selection on a small set from the target domain
- Ensuring the ensemble's diversity yields better generalization
- It is important to carefully choose which data to use in the feature selection
 - If you are selecting a small sample Vote Entropy is the best option
 - If the sample size is large Random sampling better represents the target domain

Thanks for your attention!

[1] L. Duan, I.W. Tsang, D. Xu, and T.S. Chua, "Domain adaptation from multiple sources via auxiliary classifiers," in *International Conference on Machine Learning (ICML 2009)*, Montreal, QC, Canada, June 2009, pp. 289–29.

[2] W. Dai, Q. Yang, G.R. Xue, and Y. Yu, "Boosting for transfer learning," in *International conference on Machine learning (ICML 2007)*, Corvallis, OR, USA, June 2007, pp. 193–200

[3] J. Gao, W. Fan, J. Jiang, and J. Han, "Knowledge transfer via multiple model local structure mapping," in *ACM SIGKDD international conference on Knowledge discovery and data mining*, Las Vegas, NV, USA, August 2008, pp. 283–291.

[4] R. Xia, C. Zong, X. Hu, and E. Cambria, "Feature ensemble plus sample selection: Domain adaptation for sentiment classification," *IEEE Intelligent Systems*, vol. 28, no. 3, pp. 10–18, May-June 2013.

[5] B. Schuller, Z. Zhang, F. Weninger, and G. Rigoll, "Using multiple databases for training in emotion recognition: To unite or to vote?," in *Interspeech 2011*, Florence, Italy, August 2011, pp. 3285–3288

