Study Of Dense Network Approaches For Speech Emotion

THE UNIVERSITY OF TEXAS AT DALLAS

Mohammed Abdelwahab, Carlos Busso

Recognition

Multimodal Signal Processing Lab (MSP)

Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas, Richardson, Texas - 75080, USA

Motivation

Background:

- It is not clear the best configuration for deep learning structures in speech emotion recognition
 - Limited databases
- No well defined network structure that works well across conditions

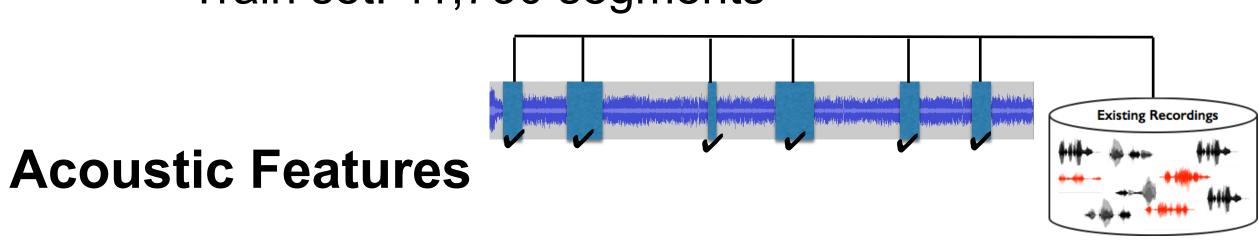
Our Work:

- We study various factors affecting performance in DNN for speech emotion recogniton
- Amount of training data
- Depth of the network
- Use of residual networks
- Activation
- Batch normalization

Database and Features

The MSP-Podcast Corpus

- Emotional corpus collected at UT-Dallas
- Multiple sentences from speakers appearing in various podcasts (2.75s – 11s)
- Annotated on Amazon Mechanical Turk for emotional dimensions
- V1.0: 20,045 labeled utterances (34 hrs, 15 min)
 - Test set: 6,069 segments from 50 speakers
 - Dev set: 2,226 segments from 15 speakers
 - Train set: 11,750 segments

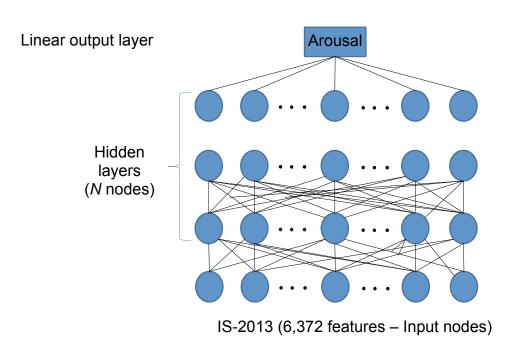


Interspeech 2013 Computational Paralinguistic Challenge feature set (6,373 features)

Experimental Setting

Models are trained to maximize the concordance correlation coefficient (CCC)

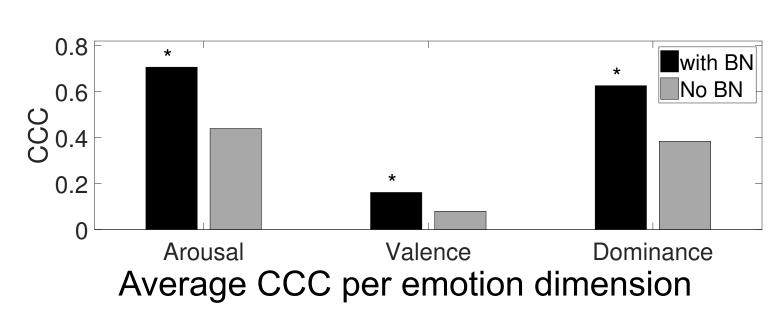
$$\rho_c(x,y) = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$

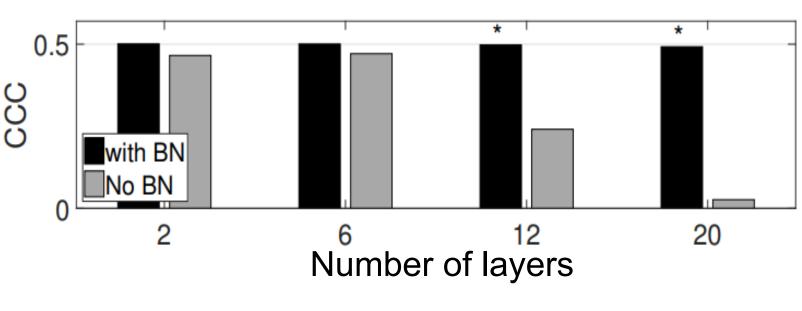


- Train networks with
- 2, 6, 12 and 20 layers
- 1k, 5.5k and 11.7k training samples
- Batch size of 256
- Learning rate of 1e-3 for first 100 epochs then linearly annealed to zero
- Dropout layers are introduced between layers
- Maxnorm of four as a weight constraint

Experiment Results

Batch Normalization

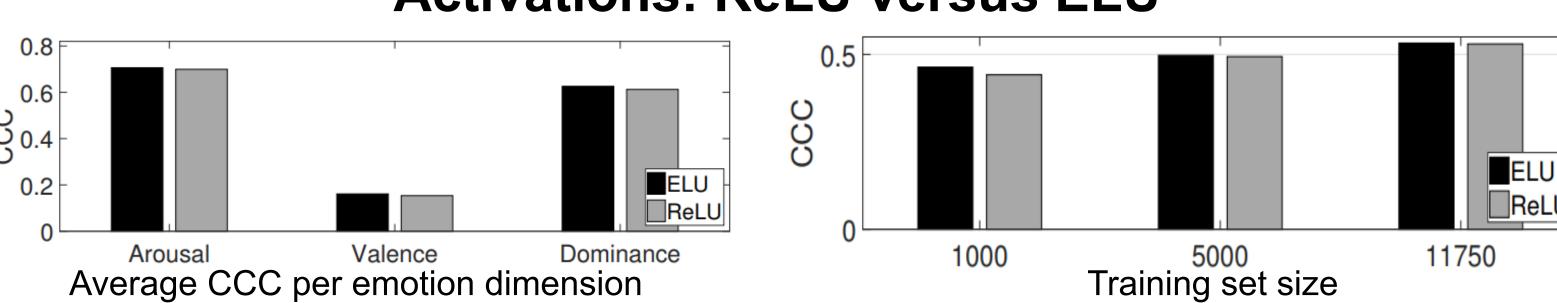




across different number of layers

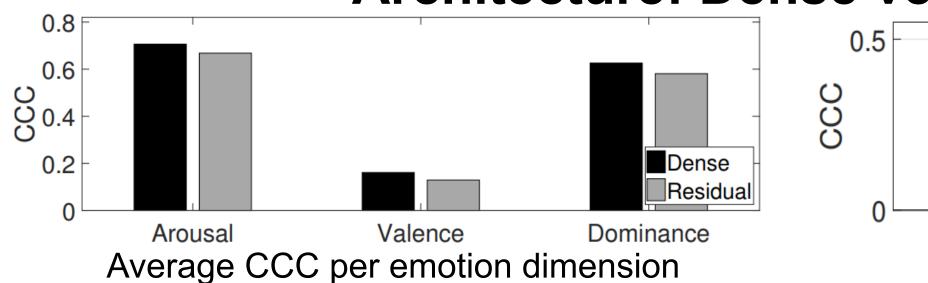
Batch normalization is crucial to maintain consistent performance

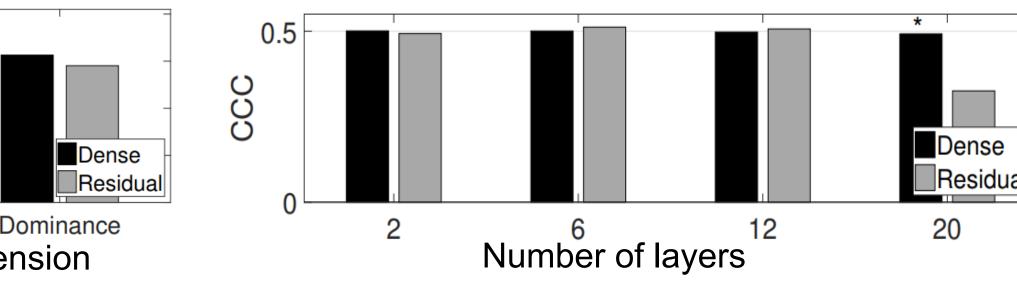
Activations: ReLU versus ELU



ELU provides slightly better performance. However, differences are not statistically significant

Architecture: Dense versus Residual





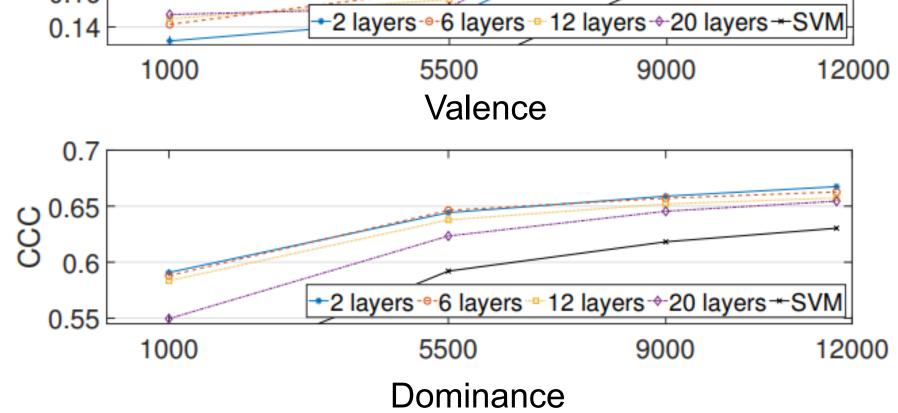
Residual networks performs significantly worse when the training set size is small

As the training set size increases, the performance increases

We expect to see further improvements with more 80.18 data (ongoing effort)

◆2 layers •• 6 layers •• 12 layers •• 20 layers •• SVM 12000 Arousal

Training Set Size



Number of layers 80.4 w Augmentation

Average CCC per emotion dimension

Data Augmentation

- Speech rate data augmentation
- Data augmentation provides a small benefit for very deep layers when the training set size is small 20 layers trained with 1,000 turns
- ccc=0.46 w/o data augmentation
- ccc=0.48 w data augmentation

Conclusions

- This study explored the performance of regression models for arousal, valence and dominance
 - Number of layers
- Batch normalization
- Size of the training set
- Residual networks
- Alternative activation functions
 - Data augmentation
- Increasing the size of the training set improves prediction performance
- Batch normalization between layers is needed
- Data augmentation is a viable option when the training size is limited

Future Work

- We are annotating more data
- Explore using GANs for data augmentation
- Study end-to-end networks

