JOINT ANALYSIS OF THE EMOTIONAL FINGERPRINT IN THE FACE AND SPEECH: A SINGLE SUBJECT STUDY

Motivation

- Different communicative modalities are used to encode the affective states. -Speech, facial expression, head motion, and body posture.
- The same channels are simultaneously used to convey other communicative goals. -Linguistic, emotional, social and physiological goals.

Previous Work

- Articulatory: low vowels (i.e., /a/) vs. high vowels (i.e.,/i/) [1].
- Facial: upper face region (i.e., forehead) vs. lower face region (i.e., lips) [2].
- Spectral: front vowels vs. nasal sounds [3].

Spectral-based neutral models (Busso et al., 2007 [3])

- Original goal: emotion recognition.
- HMM models trained with MFB.
- Models for broad phonetic classes.
- Output: likelihood score (decoding).
- Measurement of similarity with neutral speech.

Front vowels	iy ih eh ae ix
Mid/back vowels	ax ah axh ax-h uw uh ao aa ux
Diphthong	ey ay oy aw ow
Liquid and glide	l el r y w er axr
Nasal	m n en ng em nx eng
Stop	b d dx g p t k pcl tcl kcl qcl bcl
Fricatives	ch j jh dh z zh v f th s sh hh hv
Silence	sil h# #h pau
	Front vowels Mid/back vowels Diphthong Liquid and glide Nasal Stop Fricatives Silence

- Fingerprint in these spectral features is stronger in some broad phonetic class.
- What happens in other channels (e.g., pitch, energy, face)?

Hypotheses

- There is interplay between linguistic and affective goals expressed in various communicate channels.
- When some channels are used to fulfill linguistic goals, other modalities with less restrictive articulatory constraints are used to convey affective goals.

Proposed Method

- Project the phonetic segmental boundaries to other communicative channels. -Spectral and prosodic speech features. -Facial expressions.
- Compare features from neutral and emotional speech. -Average: Ratio emotional/neutral (reported in the paper). -Distribution: Kullback-Leibler Divergence (KLD).
- The focus is on instantaneous behavior displayed during the phonetic boundaries.

Carlos Busso and Shrikanth S. Narayanan

Speech Analysis and Interpretation Laboratory (SAIL) Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 busso@usc.edu, shri@sipi.usc.edu

dcl gcl q epi

Audio-visual database

- A VICON motion capture system tracked 102 facial markers (3 cameras).
- Phoneme transcription was estimated with forced alignment (HTK toolkit).

(a) Facial marker layout

Features

- Facial expression
- -Each marker was used as a facial feature.
- -The markers were aggregated in facial areas.
- -(F1) Forehead, (F2) Left eye, (F3) Right eye, (F4) Left cheek,
- (F5) Right cheek, (F6) Nasolabial, and (F7) Chin.
- Prosodic speech features -Pitch and RMS energy
- Spectral speech features
- Likelihood score values (neutral models)

Experimental Results

Longer bars mean larger KLD (i.e., stronger differences between the distributions). **Spectral speech features**

- The differences disappear for phonetic classes such as nasal sounds (N).
- Physical constraints in the articulatory domain restrict the degrees of freedom.

Prosodic speech features

- These features predominantly describe the source of speech.
- Pitch: emotional modulation for stop and fricatives (T, C) is strong.
- Energy: the KLD for vowels (B, D, F) are higher than other classes.

• An actress read a corpus four times (sadness, happiness, anger, and neutral state).

• Emotions with a high level of arousal present strong differences for vowels (F, B).

Facial expression

The displacement coefficient is defined to quantize the facial activeness

- communicative goals.

Future work

- between modalities.
- Korea, 2004, pp. 889–892.
- 549-556.

Acknowledgements

$$\Psi_u = \frac{1}{T_u} \sum_{i=1}^{T_u} D_{eq}(\vec{X}_i^u, \vec{\mu}^u)$$
(1)

• Nasal sounds present stronger emotional modulation in happiness and anger. • Emotional modulation in upper facial region is higher than in orofacial area. • Acoustic domain: happiness is the emotion with stronger modulation. • Facial domain: anger is the emotion with stronger modulation.

• Different modalities are used to emphasize happiness and anger.

Discussion and conclusions

• The paper presents evidences about the emotional encoding process.

• Facial expression and pitch present stronger emotional modulation when the articulatory configuration does not have enough freedom to express emotions.

• Emotional bits are assigned to the modalities that are less constrained by other

• Emotional assignment compensates temporal limitation seen in other modalities.

• Analyze other phonetic descriptions to link acoustic and visual modalities.

-Manner of articulation (i.e., fricative, stop).

-Place of articulation (i.e., bilabial, dental, palatal).

• Validate the results in a database collected from more speakers (IEMOCAP). • Design emotional models that capture the underlying relationships and interplays

References

[1] C. Lee, S. Yildirim, M. Bulut, A. Kazemzadeh, C. Busso, Z. Deng, S. Lee, and S. Narayanan, "Emotion recognition based on phoneme classes," in 8th International Conference on Spoken Language Processing (ICSLP 04), Jeju Island,

[2] C. Busso and S. Narayanan, "Interplay between linguistic and affective goals in facial expression during emotional utterances," in 7th International Seminar on Speech Production (ISSP 2006), Ubatuba-SP, Brazil, December 2006, pp.

[3] C. Busso, S. Lee, and S. Narayanan, "Using neutral speech models for emotional speech analysis," in *Interspeech 2007* -*Eurospeech*, Antwerp, Belgium, August 2007, pp. 2225–2228.

This research was supported in part by funds from the NSF and Army.