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Abstract

One of the main challenges in emotion recognition from speech
is to discriminate emotions in the valence domain (positive ver-
sus negative). While acoustic features provide good characteri-
zation in the activation/arousal dimension (excited versus calm),
they usually fail to discriminate between sentences with differ-
ent valence attributes (e.g., happy versus anger). This paper fo-
cuses on this dimension, which is key in many behavioral prob-
lems (e.g., depression). First, a regression analysis is conducted
to identify the most informative features. Separate support vec-
tor regression (SVR) models are trained with various feature
groups. The results reveal that spectral and FO features pro-
duce the most accurate predictions of valence. Then, sentences
with similar activation, but with different valence are carefully
studied. The discriminative power in valence domain of indi-
vidual features is studied with logistic regression analysis. This
controlled experiment reveals differences between positive and
negative emotions in the FO distribution (e.g., positive skew-
ness). The study also uncovers characteristic trends in the spec-
tral domain.

Index Terms: valence, emotion recognition, speech analysis,
emotion representation

1. Introduction

Emotion recognition is an important problem in the context of
behavioral signal processing (BSP) and human machine inter-
faces (HMIs). Among different modalities, speech is a valu-
able source of information to recognize expressive behaviors.
In many scenarios and practical problems, it is the only source
of information (e.g., call center). Previous studies have re-
ported important progress in affective computing. While acous-
tic features have been successfully used to discriminate emo-
tions characterized with low or high arousal, previous efforts
have failed to robustly discriminate emotions that differ in the
valence domain (e.g., happy versus anger) [1, 2]. The lack
of discrimination in the valence domain is a major problem
in many behavioral problems such as depression and post-
traumatic stress disorder (PTSD). This paper aims to identify
traits in speech that characterize the valence dimension.
Emotional primitives are a popular alternative representa-
tion of expressive behaviors. Instead of defining a limited, usu-
ally incomplete, set of discrete emotional labels, two or three
continuous primitives are defined which cover the entire space.
The most common attributes are activation/arousal (excited ver-
sus calm), valence (positive versus negative) and dominance
(weak versus strong). Several studies have attempted to predict
the emotion in terms of these attributes. For example, Grimm
et al. proposed several regression models for primitives-based
emotion recognition [3, 4]. They were able to achieve small
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classification errors using support vector regression (SVR) [4].
Wollmer et al. proposed recurrent neural network (RNN) and
conditional random field (CRF) to track continuous dimensions
[5]. In all these studies, the valence dimension was found to be
the most challenging attribute. For example, while a linear ker-
nel SVR could predict activation (pg.¢. = 0.80) and dominance
(pdom. = 0.77) with high accuracy, the correlation for valence
was only pyq. = 0.37 [4]. This problem is not only observed
with continuous attributes but also with discrete emotional la-
bels [6]. For example, Yildirim et al. reported that angry and
happy sentences, and neutral and sad sentences share similar
acoustic patterns [2]. Therefore, they are highly confused in the
acoustic domain. Notice that these pairs of emotions are similar
in the activation domain, but they are different in the valence
domain. These studies suggest that finding relevant features to
discriminate in the valence domain is one of the main challenges
in emotion recognition.

Previous studies have reported some acoustic patterns that
are relevant for valence. Spectral tilt, type of phrase accent and
boundary tone were found to be useful to discriminate valence
[7]. Perez-Espinosa et al. measured the performance of several
acoustic feature groups to predict continuous emotion primi-
tives, including valence [8]. Goudbeek et al. reported that pos-
itive valence increases the mean value of the second formant
[9]. In contrast to previous work, this paper aims to systemat-
ically analyze the discriminative power of an exhaustive set of
acoustic features in the valence dimension.

This paper systematically studies acoustic properties de-
scribing valence. First, acoustic features are clustered into en-
ergy, FO, voice quality, spectral, MFCCs and RASTA features.
A separate SVR model is trained for each of the feature group.
The analysis shows that spectral and FO features provide the
most accurate predictions of valence. Then, a controlled ex-
periment is proposed, in which sentences with similar activa-
tion, but different valence are carefully studied. With this novel
approach, we analyze individual features by using logistic re-
gression analysis. The study reveals differences between posi-
tive and negative emotions in the FO distribution (e.g., positive
skewness). It also uncovers characteristic trends in the spectral
domain.

2. Motivation

To motivate the proposed study, we implement a regression
analysis to predict the emotional content in terms of activation,
valence and dominance. The study relies on the Vera am Mittag
(VAM) database, which provides realistic audiovisual record-
ings of emotional behaviors [10]. The corpus was recorded
from a German TV show, in which the guests discuss their per-
sonal problems. Although the corpus includes video recording,



Table 1: Low level descriptors from speech. The derivatives of
these LLDs are estimated and included for analysis (the suffix
de is included to denote derivatives).
Group Low level descriptors

Sum of RASTA style Auditory Spectrum  SumAudSpecRasta

Nomenclature

Energy Sum of Auditory Spectrum SumAudSpec
RMS Energy RMSenergy
Zero Crossing Rate ZCR

FO Fundamental frequency FO
Probability of Voicing ProbVoicing
Jitter (Local) JitterL

Voice Quality Jitter (Delta) JitterD
Shimmer (Local) ShimmerL
Spectral Flux SpectFlux
Spectral Entropy SpectEnt
Spectral Variance SpectVar
Spectral Skewness SpectSkew
Spectral Kurtosis SpectKurt

. Spectral Slope SpectSlope

Spectral Spectral Rolloff 0.25 SpectROf25
Spectral Rolloff 0.50 SpectROft50
Spectral Rolloff 0.75 SpectROff75
Spectral Rolloff 0.90 SpectROff90

Spectral Energy 25-650 Hz Spectfband 25-650
Spectral Energy 1k-4kHz Spectfband 1k-4kHz
MECC Mel-frequency cepstrum coefficients mfcc
Rasta-Style Filtered- Rasta[1-26]
RASTA Auditory Spectral bands[1-26]

our study includes only the acoustic modality. The VAM corpus
consists of 12 hours of recordings from 47 speakers. The dia-
logues were segmented into utterances, which were emotionally
annotated by 17 raters in terms of the continuous attributes acti-
vation, valence and dominance. The perceptual evaluation was
implemented using the icon-based, text-free method self assess-
ment manikins (SAMs), in which the raters are required to select
the pictorial representation that best describes their perceived
emotions. For each sentence, the average value across raters is
mapped into the range [-1, 1], which is used as ground truth.
The study uses 947 utterances from 47 speakers (11 male and
36 female).

We estimate an exhaustive set of sentence level features in-
cluding prosodic, spectral and voice quality features. The set
corresponds to the features provided for the Interspeech 2011
Speaker State Challenge [11]. The feature set includes 59 low-
level descriptors (LLDs) related to energy, spectral feature, and
voiced related features (Table 1). For each of the LLDs, we
estimate high level descriptors (HLDs) consisting of 33 base
functionals and 6 FO functionals (Table 2). Altogether, the study
uses 4,368 sentence level features. The feature set is reduced us-
ing correlation feature selection (CFS). The features are com-
pared and ranked-ordered according to their correlation. The
underlying hypothesis is that a good feature subset should con-
tain features highly correlated with the target class. At the same
time, the features should be uncorrelated with each other to
avoid collinearity, which is important in regression problems.
Notice that the criterion does not use any particular learning al-
gorithm for optimization. The features are sequentially included
using forward feature selection.

For regression, we use a linear kernel support vector regres-
sion (SVR) framework with sequential minimal optimization
(SMO). SVR is a regression approach based on support vec-
tor machine (SVM). While SVMs aims to determine the max-
imum margin separation hyperplane between two classes for
classification, SVR aims to find the optimal regression hyper-
plane in which most of the training samples lie within a margin.
The SVR is trained and tested with WEKA data mining toolkit.
The corpus is split in four speaker independent partitions (i.e.,
speech from one speaker is included only in one set). Then, a

Table 2: High level descriptors derived from LLD.
Functionals suffix
Quartiles 1-3 qrtl 1-3
Inter-quartile ranges iqrl-2, iqr2-3, iqr1-3
Percentile (1%,99%) pretl1.0, pretl99.0

Arithmetic Mean, Standard deviation amean, std
Skewness, Kurtosis skew, kurt
Mean of peak distances meanPeakDist
Standard Deviation of peak distances peakDistStd
Mean of peaks peakMean
Arithmetic Mean of mean peaks peakMMDist

Linear Regression Slope and Quadratic error linregcl, linregerrQ
Quadratic Regression coefficients and Quadratic error qregel, qrege2, qregerrQ

Contour Centroid centroid
Duration when Signal below 25% range dltime25
Duration when Signal above 90% range ultime90
Duration when Signal rising/falling risetime , falltime
Gain of linear prediction (LP) Ipgain

LP Coefficients Ipc 0-4
Percentage of non-zero frames nnz

mean, max of segment length meanSegLen, maxSeglLen
min, std. dev. of segment length minSegLen,StdsegLen
Input duration in seconds duration

Table 3: Prediction of valence, activation and dominance using
linear kernel SVR.

Attribute Wit.hout CFS Feature Selection
Correlation Mean Absolute Error
Valence 0.2161 0.3483
Activation 0.5497 0.3866
Dominance 0.5650 0.3756
Attribute With CFS Feature Selection
Correlation Mean Absolute Error
Valence 0.3245 0.1452
Activation 0.8035 0.1690
Dominance 0.7637 0.1465

fourfold cross validation test is implemented with three sets for
training and one set for testing.

Table 3 shows the regression results in terms of correla-
tion and mean absolute error. The results are provided with
and without CFS. The table suggest that reducing the feature
set with the proposed feature selection scheme improves the re-
gression performance. More important, the results indicate that
acoustic features provide discriminative information to predict
activation (pac.= 0.80) and dominance (pgom. = 0.76). How-
ever, we observe significantly lower performance in predicting
valence (pyqi. = 0.32). These results agree with previous stud-
ies that indicate the lack of discrimination of acoustic features in
the valence dimension [1, 4, 12]. Given these limitation on the
acoustic domain, this paper aims to identify the most relevant
acoustic features describing valence. The findings can guide
the selection of new acoustic features with better discrimination
in this important dimension.

3. Acoustic Features Describing Valence

This section describes the proposed analysis to identify the most
relevant acoustic features in the valence dimension. For this
purpose, we group low level descriptors into energy, FO (funda-
mental frequency), voice quality, spectral, MFCCs and RASTA
features (see Table 1). While MFCCs and RASTA features are
clearly spectral features, we decide to analyze them in separate
groups to study the effect of discrete cosine transform (DCT)
and temporal filtering after spectral analysis. Since the scope of
this paper is valence, we only focus on this dimension.



Table 4: Prediction of valence from different acoustic feature
groups using Support Vector Regression

Group Correlation Mean Absolute Error
AEnergy 0.1555 0.1531
AFo 0.2749 0.1466
Avo 0.0817 0.1679
)\Spect'r‘al 0.2721 0.1453
AMFCC 0.2843 0.1474
ARASTA 0.1606 0.1498
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Figure 1: Cluster for binary problem

3.1. Regression per Feature Group

First, we train separate regression models for each feature
group. This evaluation aims to identify the feature groups that
are more informative in the valence dimension. The correlation
coefficient between the predicted valence and the correspond-
ing average value given by human evaluators is used as a metric
of the discrimination associated with each feature group.

The analysis follows a similar approach as the one pre-
sented in section 2. For each feature group, we train a separate
linear kernel SVR with SMO. We reduce the feature set using
CFS. We use a fourfold speaker independent cross-validation
scheme in which 75% of the data is used for training and 25%
for testing. The reported results correspond to the average val-
ues across the folds. Although previous studies have argued that
voice quality features can provide discriminant information in
the valence domain [13], the selected features are not able to
produce an accurate prediction (p = 0.08). Spectral and FO
features are the groups that give better estimates of valence.

3.2. Positive Versus Negative Classification

In the second part of the analysis, we present a novel controlled
evaluation to identify specific features that describe valence.
The evaluation consists in analyzing speech samples that are
perceived with similar activation, but with different valence.
Figure 1 plots the perceived activation-valence values of the
samples in the VAM corpus. The figure also shows two rect-
angles that define the samples considered in this section. The
two clusters have clearly different valence (negative versus pos-
itive). However, their activation values are close to zero. The
rectangles includes at least 50 samples per group. Notice that
dominance ratings are usually highly correlated with activation
ratings. Therefore, it is expected that most of the selected sam-
ples will also have similar dominance values. By defining these
two groups that are emotionally different only in the valence do-
main, we expect to directly observe acoustic features that effect
the valence dimension.

The proposed analysis to identify the most informative fea-
ture for valence is based on logistic regression. Logistic regres-
sion is used to model binary or dichotomous variables. In this
study, the binary categories correspond to positive or negative
valence (Fig. 1). The conditional expectation of the variable
given the observations E(V'|f1, ..., f») is given by equation 1.
After applying the logit transformation (Eq. 2), the regression

problem becomes linear in its parameters (5o, . . . , On)-
Bo+B1f1+---Bnfn
EWVIf,....fn)=7(f) = mmmarmm D

g(f) =In [71 j(jr‘)(f)} = Bo+Bifi+...Bufn 2
A property of logistic regression is that the benefits of in-
cluding new features in the model can be statistically measured
by using the log-likelihood ratio test between two nested mod-
els (i.e., the variables of one model are included in the vari-
ables of the other model). The proposed approach to estimate
the discriminative power of each input feature consists in com-
paring a constant model (Eq. 3) with a model trained with a
single feature f; (Eq. 4). Then, we estimate the statistic x=-2
log-likelihood ratio of the models, which is approximately chi-
square distributed. This statistic is used for hypothesis testing.

Ho:p80=0 go(fi) = pBo 3)

Hy:p1#0 gi(fi) = Po+Pifi 4

Among the 4,368 features, only 435 of them are found rel-
evant to discriminate between the two groups (i.e., their re-
gression models with one feature were significantly better, at
p-value=0.05, than the constant model). Notice that the most
discriminative features ranked with this approach may be cor-
related. Therefore, the selected set is expected to be different
from the features selected with CFS. Figure 2 provides a pie
chart with the distribution per group for these features (similar
to the metric share defined in [14]). The figure shows that spec-
tral features (including RASTA and MFCC) concentrate over
80% of the relevant features. Only 10% of the these features
correspond to energy and FO features.

Figure 3 gives the best 30 features according to their log-
likelihood ratio. The features are colored per group. The best
feature is FOdltime25 which corresponds to the duration when
FO is below its 25% range. Further analysis on the data re-
veals that this feature is higher on sentences with positive va-
lence. For these sentences, we observe that FO median (FOgrtl2)
is lower since there are longer duration with small FO values.
These changes in FO distribution affect its skewness, which in-
creases in positive sentences (FOskew).

According to the analysis, the best feature group for dis-
criminating valence corresponds to RASTA style filtered au-
ditory spectrum (14 features in Fig. 3). RASTA features
capture the envelope of the true spectrum, reducing the effect
produced by noise. From our analysis the ninth, tenth and
eleventh coefficients are the best low level descriptors. These
coefficients correspond to filter banks with center frequencies
at 952Hz, 1111Hz and 1287Hz, respectively. Relevant infor-
mation is found between 900 and 1300Hz. The functionals
Rfilt[9]prctll.0, Rfilt[10]prctll.0, and Rfilt[11]prctl].O are the
best three RASTA features. The functional prct/1.0 corresponds
to the 1% percentile of the signal (Table 2). Further analysis on
these features reveal higher values for positive sentences. The
minimum energy for these coefficients tends to increase.

We observe that the statistics from SpectROff75 and Spec-
tROff90 are selected among the best features. The LLD Spec-
tral RollOff[X] (SpectROffX) is defined as the frequency for
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Figure 2: Distribution per group of relevant feature
given by logistic regression analysis.

which X% of the signal energy fall below that frequency. In
particular, the median of the SpectROff75 derivative (Spec-
tROff75deqrtl2), and the durations when SpectROff75 and Spec-
tROff75 rise (SpectROff75risetime, SpectROff90risetime) are
among the best features. We observe that these values increase
for sentences with positive valence. These results suggest that in
positive sentences the frequency tends to increase from frame to
frame (longer durations with rising spectral roll off frequency).

4. Conclusions

This paper addressed the important problem of identifying rel-
evant features in the valence domain. The analysis with sepa-
rate regression models trained with various feature groups re-
veals that spectral and FO features are the most discriminative
acoustic groups. The paper also presented a novel controlled
experiment to study valence. Sentences with similar activation,
but with different valence were carefully studied. The analy-
sis revealed differences in FO distribution for positive sentences
(e.g., positive skewness). The study also uncovered characteris-
tic trends in the spectral domain.

The proposed analysis can be extended. The study only
considered sentences with neutral activation values. We are
planning to replicate the analysis with samples with similar
high/low activation values, but with different valence values
(moving up/down the rectangles in Fig. 1). The challenge in
this analysis is that current emotional databases do not span the
entire activation-valence space as shown in Figure 1. New emo-
tionally balanced corpora will be needed. Since spectral prop-
erties are important to discriminate between positive and neg-
ative emotions, we are planning to study articulatory variables.
This analysis will give us a better understanding of the key as-
pects that are used in expressive speech production to modulate
changes in the valence domain. These valuable insights will
guide us in the design of robust emotion recognition systems.
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