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Abstract— While bias in artificial intelligence is gaining
attention across applications, model fairness is especially
concerning in medical applications because a person’s health
may depend on the model outcome. Sources of bias in medical
applications include age, gender, race, and social history.
However, in oral cancer diagnosis, the oral location may be
a source of bias. Variability in performance based on the
oral location has been reported but is not well understood.
To help ensure that models perform equitably regardless of
location, we design three experiments to study the effect of oral
location on model performance. We show that multispectral
autofluorescence images retain tissue-type characteristics,
but that the tissue-specific information is degraded in lesion
images. Furthermore, we show that the tissue-specific features
are not disentangled from the disease-associated features. Our
results show that automated diagnosis models need to be
thoughtfully designed to remove bias from the oral location
to ensure equitable performance. Based on these insights, we
propose a tissue-specific fine-tuning approach that increases
overall performance and lowers the fairness gap by over 5%.

Clinical relevance— This paper explores sources of off-
target variance in multispectral autofluorescence images. By
understanding sources of bias in multispectral autofluorescence
images, fairer and more robust models for oral cancer diagnosis
and margin delineation can be developed, leading to greater
clinical acceptance and more equitable patient outcomes.

I. INTRODUCTION

As machine learning and deep learning models have
increasingly become integrated into our daily lives, questions
of bias and fairness in modeling have also emerged as im-
portant considerations across disciplines [1]–[4]. Particularly
in the medical device industry, questions of fairness and
interpretability are important for clinical translation. Patients
want to know that their gender, race, or social history will not
decrease the likelihood of accurate diagnosis and successful
treatment. Likewise, clinicians want assurance that a model
result is not skewed by training data bias or data collection
techniques. Based on these concerns, researchers are explor-
ing bias in automated diagnosis applications. For example,
Larrazabal et al. [5]showed that gender imbalance in x-ray
training data sets can negatively impact model performance.
The authors show changes in performance based on the ratio
between males and females in the training data, leading to
the worst performance when training with data from one
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gender and testing with data from the other gender [5]. Lin
et al. [6] explore age, race, and sex biases using a pairwise
fairness difference metric in several automated diagnosis
tasks, including COVID-19 detection from x-rays. Though
differences in age, gender, and race are more commonly dis-
cussed as sources of bias, numerous factors may contribute
to bias. Drukker et al. [7] describe 29 categories of potential
bias in medical applications of AI.

Despite promising performance in oral cancer diagnosis
and margin delineation [8]–[11], sources of bias in multispec-
tral autofluorescence imaging (maFLIM) have not been well-
studied. Marsden et al. [12] showed different classification
performances based on the tissue type. However, the reason
for a difference in performance based on the tissue type
remains an open question. Several sources of bias could
result in different performances based on the tissue type. For
example, oral cancer is more common in the tongue than in
the cheek [13] so the difference in performance could be
due to the underlying disease process being more common
in a specific tissue type, rather than information about the
tissue type. However, the images could retain information
about the tissue type that is unrelated to the disease process.
While other sources of bias may also include gender, tobacco
history, alcohol history, race, or lesion size, we begin to
narrow these down by focusing on the tissue type. This study
explores the following questions:

• Do maFLIM images retain information about the tissue
type?

• Is tissue type information degraded in lesion images?
• Are the features that separate diseased tissue from

normal tissue different from the features that indicate
the oral location? i.e., can we remove oral location
information by picking the right subset of features?

By answering the above questions, we hope to guide the
development of fairer models for oral cancer and margin
delineation that perform equitably regardless of the tissue
type where the lesion arises.

Our analysis indicates that maFLIM images do retain
information about the tissue type and that we cannot eas-
ily remove this information by carefully selecting features.
However, our proposed tissue-specific fine-tuning method
improves overall performance by 1.76% to 5.16% on a
disease-related task. Our proposed model also shows less
bias towards a specific oral location.

II. IMAGING SYSTEM
The maFLIM system is a dual-excitation, frequency do-

main imaging system [14], [15]. The system produces dif-
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Fig. 1: Tissue-Based Differences and Image Artifacts. Left - Gingiva with tooth base, free gingiva, and attached gingiva.
Center - Tongue with motion artifact. Right - Buccal mucosa with saliva bubbles.

ferent outputs than the data produced by the time-domain-
based system used in our previous studies [8]–[10], [16].
Previously, we collected a time series at each pixel. In the
frequency domain system, each pixel contains a complex
number for each excitation-emission pair. The imaging sys-
tem used for data collection uses two excitation wavelengths
and collects the resulting autofluorescence in three spectral
bands for the lower excitation and four spectral bands for
the higher excitation, resulting in a total of seven excitation-
emission combinations. The justification for the choice of
excitation and emission bands in relation to the development
of oral cancer has been established by multiple previous
studies [17]–[25]. From the complex representation at each
pixel, a total of fifty features were calculated, including inten-
sity, modulation, and phase features. The excitation-emission
bands were designed to target structural and metabolic prop-
erties of oral tissue that may be altered in disease processes.
However, these bands may also contain information about
the tissue type. Visually, we can see three different regions
in gingiva images (see Fig. 1a). The three regions appear
to correspond with the base of two teeth (top of image),
a narrow band of free gingiva (unkeratinized tissue), then
the attached gingiva (keratinized tissue) that takes up the
majority of the image. Similarly, different tissue types tend
to have different imaging artifacts. The tongue is difficult to
hold still during imaging, and motion is commonly visualized
as blurring in the intensity image (see Figure 1b and the
vertical line towards the center of the tongue image). Saliva
bubbles can accumulate on the buccal mucosa and appear as
circular regions in the intensity image (see Figure 1c). These
qualitative observations hint that maFLIM images vary based
on location to some extent. However, these images only show
the intensity information and do not quantitatively establish
that the maFLIM images retain tissue type information.

III. DATA

The data was collected at The University of Oklahoma
with institutional review board (IRB) approval (IRB:12637).
Data collection at this clinical site is ongoing and recruitment
has already increased since this analysis began. For this
research, we include images from the first 80 patients. The

data collection protocol differs based on the type of patient.
For patients without a lesion, images were taken from all oral
locations: lip, cheek, palate, tongue, and gingiva. For patients
with a lesion, at least two images are taken: one or more
lesion images and a normal image from the contralateral
side of the mouth. If possible, multiple images are taken
from the lesion, with one at the center and several at the
edges of the lesion. For this work, we exclude the images
at the edges of the lesion because these images contain
both normal and lesion pixels as visually assessed. Each
pixel in the image contains 50 features including intensity,
modulation, and phase features. While these features are
difficult to visualize in a meaningful way, we can see some
information by plotting the summed intensity maps across
all excitation-emission bands (see Fig. 1).

Although visually inspecting the maFLIM intensity images
leads to some intuition that the images retain tissue type
information, we want to study the differences quantita-
tively and understand if tissue information is retained in all
maFLIM image features. To remove the effect of changes
due to the disease process, we first study only the normal
images from patients coming from lip, cheek, and tongue
locations. We focus on lip, cheek, and tongue images to
avoid complications from the gingiva and palate artifacts.
In gingiva images, teeth often take up a large, but variable,
portion of the image. Gingiva images frequently have teeth
in the images as well as two types of tissue: attached gingiva
and free gingiva. The palate is more difficult to access and
thus may be out of focus, leading to complications in the
analysis. In addition, since the difference in tissue type may
be smaller than the difference between patients, we compare
each patient’s lip and cheek images to their tongue image.
Since the inside of the lip and buccal mucosa are very
similar, we expect the maFLIM lip and cheek images to be
similar, but different from the tongue images for each patient.
Figure 2 shows the percentage of patients where the feature
difference between lip and cheek images is smaller than the
average of the cheek-to-tongue and lip-to-tongue differences.
We conduct this analysis for each feature. We highlight the
50% corresponding to a random level with a red line. If the
bars are near this value, we can conclude that the features



are not dependent on their location. Figure 2 shows that a
majority of the bars are above the random level percentage,
indicating that the features of the cheek and lip are similar
but different from the features of the tongue. Normal images
contain tissue-type information. However, Figure 2 indicates
that some features are less descriptive of the tissue type
than others. Given that the previous analysis only considered
normal images, we raise the following questions:

• Is tissue type information degraded in lesion images?
• Are the features that separate diseased tissue from

normal tissue different from the features that indicate
the oral location? i.e., can we remove oral location
information by picking the right subset of features?

We explore these questions in the following section.

IV. ANALYSIS OF TISSUE-LEVEL DIFFERENCES

A. Understanding Tissue-Level Differences: SVM Models

To address the questions mentioned in Section III, we
conduct discriminative analysis using support vector machine
(SVM). We use leave-one-patient-out cross-validation. In
each fold, we train the models with the data from all patients
except one, testing the model on the data from this patient.
We use the L1 regularization such that the less-relevant
features for the specific task are set to zero. We set the
regularization parameter such that the level of sparsity is
similar for each task. Specifically, we set C = 1e-5 for the
tissue-type task and C = 5e-5 for the disease-related task.

Based on the plots from normal images in Section III,
we expect that a model will be able to predict the tissue
type in maFLIM images from normal tissue. However, the
disease process in lesion images may alter the characteristics
of the tissue such that tissue type information is degraded. To
understand how the disease process may affect the tissue type
characteristics, we train a support vector machine (SVM)
as a binary classifier to predict if an image is from the
cheek/lip area or from the tongue area. We first train the
model using only normal images. As shown in Table I, the
testing accuracy on normal images is 76.47%. Next, we train
the models using both normal and lesion images, and test on
the normal images. If the tissue type information is similar
in both normal and lesion images, we expect that the larger
amount of training data will increase the test performance.
However, Table I, column 2, shows that adding the lesion
images to the training set decreases test performance on
the normal images in all metrics. The maximum decrease
in performance is a 8.82% decrease in sensitivity, indicating
that the tissue type information in normal images is degraded
in the lesion images.

We repeat the experiment by testing on lesion images
instead of normal images. The results are shown in Table II.
Training the model on normal images and testing on lesion
images shows near-random performance, with an accuracy of
57.78%, further confirming that the tissue-specific informa-
tion in lesion images is degraded. However, when the lesion
training data is added to the normal training data, the lesion
test accuracy increases by 6.66%. The increase in lesion
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(a) intensity features
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(b) modulation features
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(c) phase features

Fig. 2: Percentage of patients where the feature difference
between lip and cheek images is smaller than the average of
the cheek-to-tongue and lip-to-tongue differences.

test performance after adding lesion data to the training set
indicates that some tissue-type information is retained in
lesion images. However, this information is not the same
as that contained in the normal images. Since different
pathologies have a greater likelihood of development in
different areas of the mouth [13], these results may be
reflective of a disease process that occurs more frequently
in a specific tissue type, rather than information actually
related to the properties of that tissue type. For example,
the classifier may be finding a relation from the data that
lichen planus often occurs bilaterally in the buccal mucosa,
while dysplasia and squamous cell carcinoma are more likely



TABLE I: Lesion training data degrades tissue type perfor-
mance in normal images. Center column: normal image test
performance on tissue type identification task using model
trained on normal images only. Right column: normal image
test performance on tissue type identification task using
model trained on normal and lesion images.

Training Data Normal Only Normal + Lesion
Sensitivity 82.35 73.53
Specificity 72.55 70.59
Average 77.45 72.06
Precision 66.67 62.50
Accuracy 76.47 71.76
F1 Score 73.68 67.57

TABLE II: Tissue type information is degraded in lesion
images. Center column: lesion image test performance on
tissue type identification task using model trained on normal
images only. Right column: lesion image test performance on
tissue type identification task using model trained on normal
and lesion images.

Training Data Normal Only Normal + Lesion
Sensitivity 95.24 90.48
Specificity 25.00 41.67
Average 60.12 66.07
Precision 52.63 57.58
Accuracy 57.78 64.44
F1 Score 67.80 70.37

to occur in the tongue.
The results from Tables I and II lead to the question -

are the features that distinguish tissue type in normal images
disentangled from the features that are relevant for distin-
guishing abnormal tissue from normal tissue? Basically, can
we simply not use certain features that are related to tissue
type when building models focused on aspects of the disease
process? To explore these questions, we train two different
SVM models: one that is trained to distinguish the tissue
type and another that is trained to classify between lesion and
normal images. We use the normal-lesion task as a proxy task
to find features likely informative for disease-related tasks
such as cancer diagnosis and margin delineation. The tissue-
type type distinguishes the different oral locations. For each
task, we identify the most discriminative features by selecting
the top non-zero features after the L1-regularization. These
features are the ones that are non-zero for at least 50% of
the leave-one-patient out cross validation runs. Then, we train
models by swapping the most discriminative features across
both tasks (i.e., training the disease-related task with the
tissue-type task features and vice versa). If the features are
disentangled, we expect that training on the swapped features
will reduce performance to near-random levels. Table III
shows the results. For the tissue-type task, training only
on the features most relevant for the disease-related task
drastically decreases performance, with accuracy dropping
more than 8%. The metrics are still well over random
performance. For the disease-related task, accuracy drops
by less than 1% when training on the swapped features.
Combined with the fact that five of the fifty features are
selected in both tasks, our results indicate that the features

TABLE III: Disease-related and tissue-type features are not
entirely disentangled. NL: normal vs. lesion task. NL Swap:
normal vs. lesion task with the model trained using top
features from tissue-type task. TT: tissue-type identification
task. TT Swap: tissue type identification task with the model
trained using top features from the disease-related task.

Model NL NL Swap TT TT Swap
Sensitivity 75.56 82.22 82.35 67.65
Specificity 80.00 75.29 72.55 68.63
Average 77.78 78.76 77.45 68.14
Precision 66.67 63.79 66.67 58.97
Accuracy 78.46 77.69 76.47 68.24
F1 Score 70.83 71.84 73.68 63.01

TABLE IV: Model performance increases with tissue-
specific fine-tuning.

Model Type Baseline Fine-Tuned
Sensitivity 68.89 68.89
Specificity 84.71 88.24
Average 76.80 78.56
Precision 70.45 75.61
Accuracy 79.23 81.54
F1 Score 69.66 72.09

are not disentangled. Therefore, we cannot ensure fair models
simply by excluding features that contain information about
the tissue type.

B. Proposed Tissue-Specific Fine-Tuning

If a very large training database existed, training a separate
model for each oral location might be a good strategy. With
the moderate number of patients in our data set, a trade-
off exists: we may increase performance by training a model
only on a specific location due to lower off-target variability.
However, we also have a higher risk of overfitting due to
an even smaller training set. As a proof-of-concept for how
we can balance the trade-off, we implement a tissue-specific
fine-tuning model. In the tissue-specific fine-tuning model,
we can take advantage of the full training data by training a
small neural network base model to identify lesion images,
and then fine-tune the model for each specific oral location
with the most relevant data. The fine-tuning step can slightly
adjust the model specifically for the given oral location while
reducing the likelihood of overfitting to the smaller training
set by lowering the learning rate or freezing some layers.
The results are shown in Table IV. The fine-tuned model
performance meets or exceeds baseline performance on all
metrics. The increases in performance range from 1.76% to
5.16%. Fairness also increases, with the lip/cheek model
accuracy staying constant at 86.67%. The tongue model
accuracy increases from 69.09 to 74.55%.

V. CONCLUSIONS

Our analysis indicates that information regarding the tissue
type is contained in normal maFLIM images, but that this
information is degraded in the lesion images. Furthermore,
we showed that the descriptive features for tissue type
identification are not disentangled from the features that are
descriptive for tasks related to disease pathology. Therefore,



we cannot simply pick the right features and ensure that can-
cer diagnosis or margin delineation models perform equally
well in all oral locations. We can, however, build models
specific for an oral location and avoid overfitting by fine-
tuning a tissue-specific model. We use the normal versus
lesion task as proof-of-concept, with the fine-tuned model
performance increasing or meeting baseline performance on
all metrics. In addition, the model decreases the fairness gap
by over 5%.

In future work, we are interested in using the degradation
of tissue-type information in the lesion images as a way to
select which pixels most likely correspond to lesion tissue
in images of small lesions that do not take up the entire
image field of view. For example, if certain pixels in a lesion
image from the tongue are miss-classified as cheek, the miss-
classified pixels may used to select the most likely lesion
pixels in the image. These approaches may help ensure that
models work equally well in all tissue types, as well as for
lesions of varying sizes.
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