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Abstract— Automated cancer diagnosis research often
focuses on a binary task - recognize dysplasia and cancer
from other lesions. However, other clinical conditions have
estimated malignant transformation rates. Grouping these oral
potentially malignant diseases with benign conditions may not
be ideal. While automated cancer diagnosis potential has been
shown in multi-spectral autofluorescence images, the existence
of a more detailed structure has not been investigated.
Training multi-class models is often avoided on small data
sets due to the low number of samples per class, but standard
clustering algorithms like k-means lack supervision to manage
high inter-patient variability. We propose an unsupervised
contrastive clustering approach, where a small neural network
is trained to group normal images together, away from
lesion images. We expect our method to reduce inter-patient
variability and amplify the existing structure among different
types of oral lesions. Our results indicate that a structure
based on risk level for malignant transformation does exist,
generating a cluster composed of over 75% high-risk lesions
and out-performing the k-means baseline of 40%.

Clinical relevance— Instead of focusing on the identification
of dysplasia and squamous cell carcinoma from other lesions
in a binary task, our investigational analysis shows that more
detailed structure exists in multi-spectral autofluorescence im-
ages, with applications in the management of oral potentially
malignant diseases.

I. INTRODUCTION

Several recent publications have described advancements
in the equipment and algorithms used to automatically and
non-invasively detect oral cancer [1]–[4]. However, the focus
of the classification algorithms is typically a binary task to
distinguish benign from malignant lesions. As an alternative
to a biopsy, the binary classification task is appropriate. At
the time of the biopsy, the lesion has already been identified
as suspicious and in need of histological investigation for
a more conclusive diagnosis. However, in non-invasive sys-
tems, images may be taken from a wider variety of lesions
and of normal tissue. In multi-spectral autofluorescence
lifetime imaging (maFLIM), data collection may include
a variety of clinical diagnoses such as morsicatio, lichen
planus, leukoplakia, geographic tongue, and fibroma. While
automated maFLIM diagnosis models have been trained

*This work was supported by NIH R01:5R01CA218739
1The Department of Electrical and Computer Engineering, The University

of Texas at Dallas, Richardson, TX 75080, USA. email@school.edu
2The School of Electrical and Computer Engineering, The University of

Oklahoma, Norman, OK, 73019, USA.
3Texas A&M School of Dentistry, Dallas, TX 75246, USA.

to separate dysplasia and cancer from other lesions, oral
potentially malignant diseases (OPMD) such as leukoplakias
are not benign and have defined malignant transformation
rates. For example, leukoplakia, erythroplakia, and prolifer-
ative verrucous leukoplakia (PVL) have estimated malignant
transformation rates of 9.5%, 33.1%, and 49.5%, respectively
[5]. While Iocca et al. [5] listed lichen planus with the
OPMDs, the estimated rate of malignant transformation is
only 1.4% and the inclusion of lichen planus as an OPMD
has been debated.

Based on the differing malignant transformation rates, a
risk-stratification approach better reflects the differences in
clinical diagnoses that have previously been lumped into a
single non-dysplastic, non-cancerous group. A non-invasive
fluorescence based imaging system may produce images with
more granular information than the binary framework for
identification of dysplasia and squamous cell carcinoma. We
are interested in understanding if maFLIM images contain
information for risk stratification of oral lesions for use in
a general dentistry setting, where the device would be used
to find patients most at risk for the development of cancer.
Such a device would allow specialists to focus on patients
most in need and decrease time to treatment.

Implementing a risk-stratification model with standard
supervised training, however, may be impractical due to data
scarcity and inter-patient variability. When the number of
classes is increased to account for the different malignant
transformation rates, the amount of training data for each
class decreases and performance is likely to drop for small
data sets. Furthermore, separating lesions by OPMD group
with a strict label will be noisy, as each group will contain
lesions that eventually develop into cancer at different rates,
with no current ability to differentiate between these out-
comes. We argue that unsupervised methods are interesting
to avoid splintering the data set into many (noisy) classes.
However, unsupervised clustering like K-means may not
show the expected structure due to inter-patient variability
masking the desired signal. To address these challenges,
this work investigates potential data structures in maFLIM
images that reflect natural groupings using a contrastive
clustering method that leverages the diversity of images that
can be collected using a non-invasive imaging system.

Rather than enforcing invariance between a fluorescence
image and its augmentation, we focus on using the readily
available groups of normal images and lesion images. We



train a small neural network model using a contrastive
loss that learns to group normal images together and push
away lesion images. We expect that by grouping the normal
images, the model will separate patient-specific information
from the disease process signal and uncover the natural
groupings in the data. By avoiding any class labels for the
lesion images, we do not have the problem of small sample
sizes in a large number of classes. We compare our method
to the k-means algorithm on the image features and find that
the proposed contrastive clustering increases the density of
higher-risk lesions such as leukoplakia in a single cluster.

II. IMAGING SYSTEM

Images were collected using a dual-excitation (375nm
and 445nm), frequency domain maFLIM imaging system
as detailed by Serafino et al. [1], with preliminary data
reported by Cuenca et al. [2]. The system captures autofluo-
rescence from endogenous fluorophores previously linked to
malignant transformation. The four emission bands were se-
lected to target collagen, nicotinamide adenine dinucleotide
(NADH), reduced flavin adenine dinucleotide (FAD), and
porphyrins. To understand the theoretic background related to
the selection of endogenous fluorophores, we refer the reader
to previous studies [6]–[14]. The collected autofluorescence
signal is transformed into the frequency domain on a field
programmable gate array (FPGA) before storage in the com-
puter. From the magnitude of the frequency representation,
we calculate normalized intensity features of the signal at
each spatial location as described in Eqs. 1 and 2. The image
size is 160x160 pixels.

There are four emission bands from the 345nm laser
and three emission bands from the 445nm laser, resulting
in 7 absolute intensity features. We use two normalization
strategies, normalizing the absolute intensity features across
the emission bands or across the excitation lasers. We denote
the features normalized across the emission bands as inter-
normalization. We calculate the inter-normalized intensity for
the 405nm emission band as below:

Iex,em405 =
Iex,em405

Iex,em405 + Iex,em475 + Iex,em550 + Iex,em647

(1)

where I represents the normalized intensity, ex represents
the excitation wavelength, and em represents the emission
wavelength. The inter-normalized features for the other emis-
sion bands are calculated using the same process. To avoid
redundancy, we do not use the inter-normalized features from
the 647nm emission band, resulting in 5 inter-normalized
intensity features. Similarly, we denote features normalized
across excitation bands as intra-normalized intensity fea-
tures. For a given emission band, we calculate the features
as below:

Iexa,em =
Iexa,em

Iexa,em + Iexb,em
(2)

We also include phase and modulation features for a total
of 50 features. We note that the signal representation for

each pixel with the frequency domain system differs from
our previously reported work [4], [15]–[17]. The previous
data representation was a time series at each pixel, while the
current representation is a complex number at each pixel for
each excitation-emission pair.

III. DATA

The data in this analysis was collected at Texas A&M
College of Dentistry (IRB2018-1251). This is an ongoing
effort where the number of patients included in the data has
increased since the start of the analysis. In this study, we
used the first 88 patients. The data collection protocol allows
for imaging of both normal and lesion tissues. Typically,
a lesion image is collected at the center of the lesion and
a normal image is taken from the contralateral, normal
side. In the case of bilateral involvement, the normal image
is taken from the most visually normal appearing tissue.
The data set consists of a wide variety of lesions, with a
high proportion of lichen planus. Thus, we are interested
in looking for structure in three groups based on malignant
transformation rates. The first group is the risk-based cases,
where we group leukoplakia, PVL, dysplasia, and squamous
cell carcinoma (SCC) as a high-risk group. We would also
include any erythroplakia or erythro-leukoplakia in the high-
risk group if patients with these lesions are enrolled in
the study in the future. The second group is the mid-risk
cases consisting of lichen planus and related lesions such as
lichenoid lesions. A recent article discusses the uncertainty
of whether dysplasia exhibits lichen planus characteristics
or if lichen planus is a precursor to dysplasia [18]. Due to
the controversial placement of lichen planus as a potentially
malignant disease, we place these in a separate gray-area
grouping. While Iocca et al. show that lichen planus has a
very low malignant transformation rate [5], whether or not
lichen planus is pre-malignant has been debated. A 2016
position paper from the American Academy of Oral and
Maxillofacial Pathology recommends that no histologically
evident dysplasia be present for a true lichen planus diagnosis
[19]. The 2003 modified WHO criterion also maintains
that the presence of dysplasia would rule out a true lichen
planus diagnosis [20]. The third group is the low-risk cases
consisting of other lesions that are not expected to develop
cancer, including fibromas, ulcers, fissure tongue, geographic
tongue, and pigmentation.

IV. PROPOSED APPROACH

A. Unsupervised Contrastive Clustering

Contrastive learning methods are increasingly used in
natural image processing applications and include both un-
supervised and supervised versions. In general, the goal
of contrastive learning methods is to generate a feature
representation that is organized according to pre-defined con-
straints. For example, simple contrastive learning of visual
representations (SimCLR) [21] trains a network such that the
features of an image and its augmentation (a positive pair) are
similar, while other images and their augmentations (negative
pairs) are more distant in the feature space. Bootstrap your
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Fig. 1: Examples of lesions in our database and proposed method. Top left: normal images (gray data points) and lesion
images (colored data points from different clinically-relevant groupings) do not show the desired structure. Bottom left: after
contrastive training, the normal images group together away from lesion images, which show clinically relevant structure.
Right: fibroma and mucous membrane pemphigoid (MMP) are examples of non-neoplastic (low risk) lesions, lichen planus
is an example of the mid-risk group, and leukoplakia and dysplasia are examples of the high risk group.

own latent (BYOL) [22] and simple siamese representation
learning (SimSiam) [23] are different implementations of
contrastive learning using only positive pairs. As noted by
the authors of BYOL, while multiple image augmentation
methods exist, finding the best augmentation method for
contrastive learning in other methods is not established [22].
Since the fluorescence lifetime imaging modality produces
images based on the autofluorescence of cellular structures
and metabolism and is typically trained on a pixel level,
standard fluorescence lifetime image augmentation methods
are not yet well-defined.

To improve the clustering results, we apply a contrastive
clustering method to teach a small neural network to group
normal pixels together, away from the lesion pixels. We do
not impose a specific direction for the lesion pixels to move
away, nor do we use any diagnoses for the lesions. We use
a simple loss function that penalizes the model for normal
samples that are far from the normal center by contributing
positively to the loss function. The lesion to normal center
distance contributes a negative term to the loss function,
encouraging the lesion pixels to move away from the normal.
With this approach, the network learns to minimize inter-
patient variability among normal images and allows more
clinically relevant structures to naturally appear in the lesion
images.

B. Implementation
The network structure is a simple three-layer fully con-

nected neural network with a dropout rate set at 0.5. The
network takes the 50-dimensional feature vector as input and
reduces the dimensionality to an 8-dimensional embedding
output. We use the ADAM optimizer and train for 50 epochs.
We create three clusters on the 8-dimensional output using
the K-means algorithm with three centroids.

V. RESULTS AND ANALYSIS
The proposed approach was evaluated with the data de-

scribed in Section III. Table I reports the results. The three

TABLE I: The proposed method increases density of high
risk lesions in a single cluster. The middle column shows the
percent of lesions at each risk level for the baseline k-means
approach using image features. The right column shows
the percent of lesions at each risk level for the proposed,
contrastive approach.

K-means Features K-means Contrastive Emb.
Cluster Low Mid High Low Mid High
A 47.06% 29.41% 23.53% 41.51% 39.62% 18.87%
B 31.58% 40.35% 28.07% 31.82% 50.00% 18.18%
C 27.78% 33.33% 38.89% 11.76% 11.76% 76.47%

clusters contain 18.87%, 18.18%, and 76.47% of high-risk
lesions, respectively. This result indicates that most high-
risk lesions are automatically grouped in one of the clusters
created by our approach. As a baseline, we use the K-means
clustering with three centroids on the original 50-dimensional
feature vector. The feature level K-means results are shown
in the center column of Table I. The three clusters contain
23.56%, 28.07%, and 38.89% of the leukoplakia or higher
risk group. While cluster C does have a higher percentage of
the high-risk group that indicates some structure, the density
of the cluster is not as effective as our contrastive clustering
strategy.

The contrastive clustering improves the high-risk density
of the top cluster from 38.89% to 76.47%, nearly doubling
the high-risk density. We look at the samples included in
cluster C (Table II). In addition to four lower-risk images in
this high-risk cluster, one is a smokeless tobacco keratosis
lesion. Since tobacco use is a known risk factor for oral
cancer [24], placing this lesion in the high-risk group makes
sense for risk stratification approaches. We also note that
some ambiguity in the clinical diagnoses exists. For example,
many patients recruited for the study with lichen planus had
very well-managed lichen planus that had been previously
treated at the time of imaging. These images are likely to be
very similar to the low-risk or normal images, while other



TABLE II: Specific diagnoses in each cluster for the K-
means contrastive Embedding.

Cluster A Cluster B

Dysplasia (4) Dysplasia (1)
Fibroma (3) Fissure tongue (1)
Geographic tongue (2) Hyperkeratosis (1)
Hyperkeratosis (3) Leukoplakia (3)

Hyperplasia (1)
Lichen planus/lichenoid mucositis
(11)

Hypersensitivity, plasma cell gingivitis
(1)

Melanosis (1)

Leukoedema (1) MMP (1)
Leukoplakia/PVL (5) Trauma from chipped tooth (1)
Lichen planus/lichenoid mucositis (21) Ulcer (2)
MMP (1)
Morsicatio (3) Cluster C
Non-specific, denture related erosion (1) Dysplasia (6)
SCC (1) Leukoplakia/PVL (5)
Ulcer (3) Lichen planus (2)
Unsuspicious area that sloughs off (1) Morsicatio (1)
Unusual - no clear diagnosis (1) SCC (2)
Vascular lesion (1) Smokeless Tobacco Keratosis (1)

images from patients with lichen planus had very severe
lesions. These differences may explain why some lichen
planus images clustered in cluster B, away from the cluster
with a high portion of low-risk lesions.

In addition to the clear high-risk grouping in cluster C
with the contrastive approach, the unsupervised approach has
some diagnostic potential for a binary task despite not using
labels. If we combine the two smaller clusters (clusters B
and C) to form a “high risk positive” group and set the
largest cluster (cluster A) as a “high risk negative” group,
we get a sensitivity of 62.96% and a specificity of 66.15%.
We combine the two smaller clusters because these clusters
do not contain any normal images. Without prior knowledge,
we would not know which of the two smaller clusters should
correspond to the high-risk group since we do not train with
labels.

VI. CONCLUSIONS

Our analysis indicates that more detailed information can
be uncovered in multi-spectral autofluorescence images of
oral lesions beyond a binary separation of dysplasia/SCC
from other lesions. Using a fine-grained clinical decision
support system, clinicians can optimize a patient’s treatment
by understanding the patient’s risk level for developing oral
cancer. With a non-invasive option to determine risk level,
patients with low risk can avoid a specialist consultation and
invasive biopsy, reducing wait times for patients with the
most severe cases.

The proposed unsupervised contrastive clustering frame-
work improves the clustering performance over a baseline
using the K-means implemented with the original features.
Our proposed approach increases the maximum high-risk
cluster density from less than 40% to over 75%. We note that
this performance may be increased by additional techniques
like training with pseudo-labels or further training in a semi-
supervised manner with a small set of labeled data. We plan
to explore these directions in our future work. Our results

are a proof-of-concept indicating structure in the features
for different levels of oral lesions. We expect that the results
will improve as more data from the ongoing research is
collected. Finally, we are also interested in understanding
the location-specific patterns that may be reflected in the
response observed for different types of lesions [25].
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