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ABSTRACT
In this paper, a data-driven audio-based head motion syn-
thesis technique is presented for avatar-based telepresence
systems. First, head motion of a human subject speaking
a custom corpus is captured, and the accompanying audio
features are extracted. Based on the aligned pairs between
audio features and head motion (audio-headmotion), a K-
Nearest Neighbors (KNN)-based dynamic programming al-
gorithm is used to synthesize novel head motion given new
audio input. This approach also provides optional intuitive
keyframe (key head poses) control: after key head poses
are specified, this method will synthesize appropriate head
motion sequences that maximally meet the requirements of
both the speech and key head poses.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three Dimensional Graphics
and Realism-Animation, Virtual Reality; I.2.6 [Artificial
Intelligence]: Learning-Knowledge acquisition; H.5.1 [Multimedia
Information Systems]: Animations

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Computer Graphics, Facial Animation, Data-driven, Head
Motion Synthesis, K Nearest Neighbor, Audio-based, Keyfram-
ing Control, Telepresence Systems

1. INTRODUCTION
Humans communicate via two channels [1, 2]: an explicit

channel (speech) and an implicit channel (non-verbal ges-
tures). In computer graphics community, significant effort
has been made to model the explicit speech channel [3, 4,
5, 6, 7, 8, 9]. However, speech production is often accom-
panied by non-verbal gestures, such as head motion and eye
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blinking. The perception study [2] reports that head motion
plays a direct role in the perception of speech based on the
evaluation of a speech-in-noise task by Japanese subjects.
Also, adding head motion can greatly enhance the realism
of synthesized facial animation that is being increasingly
used in many fields, e.g. education, communication, and
entertainment industry.

Because of the complexity of the association between the
speech channel and its accompanying head motion, gen-
erating appropriate head motion for new audio is a time-
consuming and tedious job for animators. They often man-
ually make key head poses by referring to the recorded video
of actors reciting the audio/text or capturing the head mo-
tion of real actors using motion capture systems. However,
it is impossible to reuse the captured data/video for other
scenarios without considerable effort. Furthermore, making
appropriate head motion for the conversation of multiple hu-
mans (avatars) poses more challenging problems for manual
approaches and motion capture methods. And automatic
head motion is a requirement in many applications, such as
autonomous avatars in avatar-based telepresence systems,
interactive characters in computer games, etc.

2. PREVIOUS AND RELATED WORK
A comprehensive review on facial animation is beyond this

work, and a recent review can be found in [10]. Recent
relevant research on non-verbal gestures and head motion is
described in this section.

2.1 Non-Verbal Gestures
Pelachaud et al. [11] generate facial expressions and head

movements from labeled text using a set of custom rules,
based on Facial Action Coding System (FACS) represen-
tations [12]. Cassell et al. [13] present an automated sys-
tem that generates appropriate non-verbal gestures, includ-
ing head motion, for conversations among multiple avatars,
but they address only the “nod” head motion in their work.
Perlin and Goldberg [14] develop an “Improv” system that
combines procedural and rule-based techniques for behavior-
based characters. The character actions are predefined, and
decision rules are used to choose the appropriate combi-
nations and transitions. Kurlander et al. [15] construct a
“comic chat” system that automatically generates 2D comics
for online graphical chatting, based on the rules of comic
panel composition. Chi et al. [16] present an EMOTE model
by implanting Laban Movement Analysis (LMA) and its ef-
forts and shape components into character animation. It is
successfully applied to arm and body movements, but the



applicability of this method to head movements with speech
has not been established. Cassell et al. [17] generate ap-
propriate non-verbal gestures from text, relying on a set of
linguistic rules derived from non-verbal conversational re-
search. This method works on text, but the possibility of
applying this method to audio input is not verified yet.

2.2 Head Motion
Researchers have reported that there are strong corre-

lations between speech and its accompanying head move-
ments [18, 19, 20, 21, 2]. For example, Munhall et al. [2]
show that the rhythmic head motion strongly correlates with
the pitch and amplitude of the subject’s voice. Graf et
al. [21] estimate the probability distribution of major head
movements (e.g. “nod”) according to the occurrences of
pitch accents. [19, 18] even report that about 80% of the
variance observed for fundamental frequency (F0) can be de-
termined from head motion, although the average percent-
age of head motion variance that can be linearly inferred
from F0 is much lower. Costa et al. [20] use the Gaussian
Mixture Model (GMM) to model the association between
audio features and visual prosody. In their work, only eye-
brow movements are analyzed, and the connection between
audio features and head motion is not reported. As such,
a data-driven synthesis approach for head motion has not
been published yet.

In this paper, a data-driven technique is presented to au-
tomatically synthesize “appropriate head motion” for given
novel speech input. First, head motion is extracted from
the captured data of a human subject, speaking a custom
corpus with different expressions. Audio is captured simul-
taneously. All the audio-headmotion pairs are collected into
a database indexed by audio features. Next, the audio fea-
tures of given new speech (audio) input are used to search
for their K nearest neighbors in this database. All such K
chosen nearest neighbors are put into a nearest neighbor
candidate pool, and a dynamic programming algorithm is
used to find the optimum nearest neighbor combination by
minimizing a cost function. This approach also provides
flexible control for animators. If key head poses are speci-
fied, this approach will try to maximally satisfy the requests
from speech and key head poses.

The main contributions of this approach are:

• It is fully automatic. It can synthesize appropriate
head motion directly from audio, and it can be used
for many applications, e.g. avatar-based telepresence
systems and computer games.

• It also provides optional flexible control. By specifying
key head poses, animators can influence the synthe-
sized head motion. Another control is to the ability
to adjust “searching weights” (Section 5) to meet the
synthesis preference of the animators.

Section 3 describes the acquisition and preprocessing of
both audio and visual data. Section 4 describes how to syn-
thesize novel head motion given new speech using a KNN-
based dynamic programming technique, and how to search
for the optimized weights is discussed (Section 5). Finally,
results and conclusions are described Section 6&7 respec-
tively.

3. DATA ACQUISITION

An actress with markers on her face was captured with
a Vicon motion capture system [22]. The actress was di-
rected to speak a custom designed corpus composed of about
two hundred sentences, each with four expressions (neutral,
happy, angry and sad) as naturally as possible. At the same
time, the accompanying audio was recorded. This data were
captured for a comprehensive research project, and only
head motion data is used in this work. Figure 1 illustrates
the markers used in this process.

Figure 1: Illustration of the markers used in mo-
tion capture. Dark points are three chosen approx-
imately rigid points.

The following procedure is used to extract the transfor-
mation of head motion for each frame:

1. A specific nose point is assumed to be the local coordi-
nate center of each frame, and one frame in a neutral
pose is chosen as a reference frame.

2. A local coordinate system is defined by three chosen
approximately rigid points (the nose point and corner
points of the eyes, shown as dark points in Fig 1).
The distance between the nose point in each frame and
that of the reference frame is its translation vector, and
aligning each frame with the reference frame generates
its rotation matrix.

3. Since this transformation is only composed of rotation
and translation, it can be further decomposed into a
six dimensional transformation vector [23]: three Eu-
ler angles (converted to “Radians” in this work) and
three translational values. As such, a six dimensional
transformation vector (T-VEC) is generated.

4. The difference between the T-VECs of two consecutive
frames (suppose ti and ti+1) is the head motion at ti.

The acoustic information is extracted using the Praat
speech processing software [24] with a 30-ms window and
21.6-ms of overlap. The audio-features used are the pitch
(F0), the lowest five formants (F1 through F5), 13-MFCC
(Mel-Frequency Cepstral Coefficients) and 12-LPC (Linear
Prediction Coefficient). These 31 dimensional audio fea-
ture vectors are reduced to four dimensions using Principal



Component Analysis (PCA), covering 98.89% of the varia-
tion. An audio feature PCA space expanded by four eigen-
vectors (corresponding to the four largest eigen-values) is
also constructed. Note that which audio features enclose
most useful information for head motion estimation is still
an open question, and audio features used for this work are
chosen experimentally.

In this way, a database of aligned audio-head-motion is
constructed (Fig 2). For simplicity, AHD (Audio-Headmotion
Database) is used to refer to this database in the remaining
sections. Each entry of the AHD is composed of a four di-
mensional audio feature PCA coefficients (AF-COEF) and
a head motion transformation vector (T-VEC). Note that
the AHD is indexed by the AF-COEF.

Figure 2: Illustration of the Audio-Headmotion
Database (AHD). Each entry in this database is
composed of two parts: a AF-COEF (four dimen-
sional audio feature pca coefficients) and a T-VEC
(six dimensional head motion transformation vec-
tor).

4. SYNTHESIZING HEAD MOTION
After the AHD is constructed (Section 3), the audio fea-

tures of a given novel speech input are reduced into AF-
COEFs by projecting them into the audio feature PCA space
(Eq. 1) created in Section 3. Here F is a 31 dimensional
audio feature vector, f is its AF-COEF, and M is the eigen-
vector matrix (31*4 in this case).

f = MT .(F − F̄ ) (1)

Then, these AF-COEFs are used to index the AHD and
search for their K nearest neighbors. After these neighbors
are identified, a dynamic programming technique is used to
find the optimum nearest neighbor combination by minimiz-
ing the total cost. Finally, the head motion of the chosen
nearest neighbors is concatenated together to form the final
head motion sequence. Figure 3 illustrates this head motion
synthesis pipeline.

4.1 Find K-Nearest Neighbors
Given an input (inquiry) AF-COEF q, its nearest K neigh-

bors in the AHD are located. In this case, K (the number
of nearest neighbors) is experimentally set to 7 (Section 5).
The euclidean distance is used to measure the difference
between two AF-COEFs (Eq. 2). Here d represents a AF-
COEF of an entry in the AHD. In this step, this distance
(termed neighbor-distance in this paper) is also retained.

dist =

√√√√ 4∑
i=1

(qi − di)2 (2)

Numerous approaches were presented to speed up the K-
nearest neighbor search, and a good overview can be found
in [25]. In this work, KD-tree [26] is used to speed up this
search. The average time complexity of a KD-tree search is
O(log Nd), where Nd is the size of the dataset.

4.2 Dynamic Programming Optimization
After the PCA projection and K nearest neighbors search,

for a AF-COEF fi at time Ti, its K nearest neighbors are
found (assume its K nearest neighbors are Ni,1, Ni,2, . . . , Ni,K).
Which neighbor should be optimally chosen at time Ti? A
dynamic programming technique is used here to find the op-
timum neighbor combination by minimizing the total “syn-
thesis cost” (“synthesis error” and “synthesis cost” are used
interchangablely in this paper).

The synthesis cost (error) at time Ti is defined to include
the following three parts:

• Neighbor-distance Error (NE): the neighbor-distance
(Eq. 2) between the AF-COEF of a nearest neighbor,
e.g. ci,j , and the input AF-COEF fi (Eq. 3).

NEi,j = ‖ci,j − fi‖2 (3)

• Roughness Error (RE): represents the roughness of the
synthesized head motion path. Smooth head motion
(small RE) is preferred. Suppose Vi−1 is the T-VEC
at time Ti−1 and TVi,j is the T-VEC of jth nearest
neighbor at time Ti. When the jth neighbor is chosen
at time Ti, REi,j is defined as the second derivative at
time Ti as follows (Eq. 4):

REi,j = ‖TVi,j − Vi−1‖2 (4)

• Away Keyframe Error (AE): represents how far away
the current head pose is from specified key head pose.
Head motion toward specified key head poses decreases
the AE. Suppose KP is the next goal of key head pose
at time Ti and Pi−1 is the head pose at time Ti−1, then
AEi,j is calculated (Eq. 5).

AEi,j = ‖KP − (Pi−1 + TVi,j)‖2 (5)

If the jth neighbor is chosen at time Ti and Wn, Wr, and
Wa (assume Wn ≥ 0,Wr ≥ 0, Wa ≥ 0, and Wn + Wr +
Wa = 1) are the weights for NE, RE and AE respectively,
the synthesis error erri,j (when the jth nearest neighbor is
chosen at time Ti) is the weighted sum ofthe above three
errors (Eq. 6).

erri,j = Wn.NEi,j + Wr.REi,j + Wa.AEi,j (6)

Since the decision made at time Ti only depends on the
current K neighbor candidates and the previous state (e.g.
the head pose) at time Ti−1, a dynamic programming tech-
nique is used to solve the optimum nearest neighbor combi-
nation.

Suppose ERRi,j represents the accumulated synthesis er-
ror from time T1 to Ti when jth neighbor is chosen at time
Ti; PATHi,j represents the chosen neighbor at time Ti−1

when the jth neighbor is chosen at time Ti. Further assume
that all the NEi,j , REi,j , AEi,j , ERRi,j , and PATHi,j are
available for 1 ≤ i ≤ l− 1 and 1 ≤ j ≤ K, we move forward
to time Tl using the following equations (Eq. 7-9).

errm
l,j = (ERRl−1,m−Wa.AEl−1,m)+Wr.REl,j +Wa.AEl,j

(7)



Figure 3: Illustration of the head motion synthesis pipeline. The first step is to project audio features onto
the audio feature PCA space, the second step is to find K nearest neighbors in the AHD, and the third step
is to solve the optimum combination by dynamic programming.

ERRl,j = min
m=1...K

(errm
l,j) + Wn.NEl,j (8)

PATHl,j = arg min
m=1...K

(errm
l,j + Wn.NEl,j) (9)

Note that in Eq. 7, 1 ≤ m ≤ K and (ERRl−1,m−AEl−1,m)
is used to remove the old AE, because only new AE is useful
for current search. PATHl,j retains retracing information
about which neighbor is chosen at time Tl−1 if jth nearest
neighbor is chosen at time Ti.

Finally, the optimum nearest neighbor combination is de-
termined by Equation 10-11. Assume Si represents the near-
est neighbor optimally chosen at time Ti.

Sn = arg min
j=1...K

ERRn,j (10)

Si−1 = PATHi,Si 2 ≤ i ≤ n (11)

Suppose TVi,j is the T-VEC of jth nearest neighbor at time
Ti, the final head pose HeadPosi at time Ti (1 ≤ i ≤ n) is
calculated in Eq. 12.

HeadPosi =

i∑
j=1

TVj,Sj (12)

The time complexity of this KNN-based dynamic pro-
gramming synthesis algorithm is O(n. log Nd +n.K2), where
K is the number of nearest neighbors, Nd is the number
of entries in the AHD, and n is the number of input AF-
COEF, for example, if 30 head motion frames per second is
synthesized and t is the total animation time (second), then
n = t ∗ 30.

5. CHOOSING THE OPTIMUM WEIGHTS
As described in Section 4, the dynamic programming syn-

thesis algorithm uses three weights ~W (Wn, Wa, Wr) to in-
fluence the outcome of the chosen nearest neighbors. What
are the optimum weights for this head motion synthesis al-
gorithm? Since it is assumed that Wa ≥ 0,Wn ≥ 0, Wr ≥ 0,
and Wa + Wn + Wr = 1. The searching space can be illus-
trated as Fig. 4.

Several speech segments (from the captured data, not
those used for constructing the AHD in Section 3) are used

Figure 4: Illustration of the search space of the
weights ~W (Wa, Wn, Wr).

for cross-validation [27]. For each speech segment, the key
head poses at the start time and the ending time are speci-
fied as the same as the original captured head poses. For a
specific weight configuration, Total Evaluation Error (TEE)
is defined as follows (Eq. 13):

TEE(Wn, Wa, Wr) =

N∑
i=1

6∑
j=1

(V̂ j
i − V j

i )2 (13)

Where N is the number of total cross-validation head motion
frames, V̂i is the synthesized head pose at frame i, and Vi is
the ground-truth head pose at frame i.

A variant of gradient-descent method and non-sequential
random search [28] are combined to search the global min-
imum TEE (its weights are the optimum weights) (Eq. 14-
15). Here only four basic directions are considered: ~e1 =
(α, 0,−α), ~e2 = (−α, 0, α), ~e3 = (0, α,−α), and ~e4 = (0,−α, α).
α is the step size (experimentally set to 0.05 in this work)

j = arg min
i=1..4

TEE( ~Wt + ~ei) (14)



~Wt+1 = ~Wt + ~ej (15)

The initial weight ~W0 is generated as follows: Wa is ran-
domly sampled from the uniform distribution [0..1], then
Wn is randomly sampled from uniform distribution [0...1-
Wa], and Wr is assigned 1−Wa −Wn.

Non-sequential random Search [28] is used to avoid get-
ting stuck at a local minimum in the weight space: a given
number of initial weights are generated at random, then
each initial weight performs an independent search, and fi-
nally, the winner among all the searches is the optimum
weights. Fig 5 illustrates the search result after 20 ini-
tial weights are used. The resultant optimum weights ~W=
[Wa = 0.31755, Wn = 0.15782, Wr = 0.52463].

Figure 5: Plot of the search result after 20 ini-
tial weights are used (K=7). The global mini-
mum is the red point, corresponding to the weights:
Wa=0.31755, Wn=0.15782, and Wr= 0.52463.

Figure 6: Plot of minimum TTE versus K. For each
K, 20 iterations of non-sequential random search are
used.

We argue that the optimum weights may depend on the
subject, since the audio-headmotion mapping reflected in

the constructed AHD may capture the head motion person-
ality of the captured subject. Further investigation is needed
to compare the optimum weights of different subjects.

Since the number of nearest neighbors is discrete, unlike
the continuous weight space, we experimentally set the opti-
mized K to 7 using the following experiments: after K is set
to a fixed number, the above searching method was used to
search the minimum TEE. Figure 6 illustrates the minimum
TTE with respect to different K.

6. RESULTS AND APPLICATIONS

6.1 Ground-Truth Comparison
To evaluate this approach, ground-truth head motion is

compared to the synthesized head motion. A speech seg-
ment that was not used for training and cross-validation is
used for comparisons, and approriate key head poses are also
specified (only start head pose and ending head pose). Fig-
ure 7 illustrates the trajectory comparisons of synthesized
head motion and ground-truth one.

6.2 Applications without Keyframes
In many applications, such as avatar-based telepresence

systems and computer games, automated head motion is re-
quired. This approach can be applied to these applications
by simply setting Wa to zero. Therefore, the head motion
is guided only by the roughness and neighbor-distance cri-
terias. In some cases, staying in the initial head pose is
preferred, for example, the avatar speaking and paying at-
tention only to one specific human subject, e.g. the user.
By automatically setting key head poses to the initial head
pose, the system can simulate these scenarios. Figure 8 il-
lustrates some frames of synthesized head motion.

6.3 Applications with Keyframes
Although various automatic approaches were presented,

keyframing is still a useful tool for animators. For example,
in the case of the conversation of multiple avatars, head mo-
tion often accompanies turn-takings. Therefore, animators
can specify the appropriate key head poses, corresponding
to the turn-taking time. This approach will automatically
fill in the head motion gaps. If animators want the synthe-
sized head motion to more closely follow key head poses,
animators just need to increase the weight Wa.

7. CONCLUSIONS AND FUTURE WORK
In this paper, a data-driven audio-based approach is pre-

sented for automatically synthesizing appropriate head mo-
tion for avatar-based telepresence systems. The audio-headmotion
mapping is stored in a database (AHD), constructed from
the captured head motion data of a human subject. Given
novel speech (audio) input and optional key head poses, a
KNN-based dynamic programming technique is used to find
the optimized head motion from the AHD, maximally sat-
isfying the requirements from both audio and specified key
head poses. Keyframe control provides flexibility for anima-
tors without the loss of the naturalness of synthesized head
motion.

This approach can be applied to many scenarios where au-
tomated head motion is required, such as automated head
motion and conversations among multiple avatars. Flexi-
bly tuning the weights used in the algorithm and specifying



Figure 7: Comparison of ground-truth head motion (red solid curve) and the synthesized head motion (dashed
blue curve), for she neutrally pronounce utterance “Do you have an aversion to that”? Note that the motion
tendency at most places is similar.

appropriate key head poses will generate various styles of
synthesized head motion. It also can be used as a fast tool
for making initial head motion. Comparing with making
animation from scratch, refining the generated initial head
motion saves much time for animators.

A limitation of this data-driven approach is that it is
difficult to anticipate in advance the amount of training
data needed for specific applications. For example, if the
specified key head poses are beyond the training data, the
performance of this approach will degrade, since there are
not enough “matched” head motion entries in the AHD to
achieve the specified key head poses. But after some ani-
mation is generated, it is easy to evaluate the variety and
appropriateness of synthesized head motion and obtain more
data if necessary. Designing a database to achieve greater
degree application independence is a topic for open research.

We are aware that head motion is not an independent part
of the whole facial motion. Since it may strongly correlate
with eye motion, e.g. head motion-compensated gaze, ap-
propriate eye motion will greatly enhance the realism of syn-
thesized head motion. The linguistic structure of the speech
also plays an important role in the head motion of human
subjects [11]. We plan to combine the linguistic structure
into this approach: a combination of linguistic (e.g. syntac-
tic and discourse) and audio features will be used to drive
the head motion.

We also plan to investigate the possibility of combining
this approach with human body animation, as in the case
of a human speaking while walking/running, since the head
motion composition involved may not just be a simple ad-
dition.

8. ACKNOWLEDGMENTS
This research has been funded by the Integrated Media

System Center/USC, a National Science Foundation Engi-
neering Research Center, Cooperative Agreement No. EEC-
9529152. Special Thanks go to Murtaza Bulut and J.P.Lewis
for data capture and insightful discussions, Hiroki Itokazu
and Bret St. Clair for model preparation, Pamela Fox for
proof reading. We also appreciate many valuable comments

from other colleagues in the CGIT Lab/USC.

9. REFERENCES
[1] Banse, R. and Scherer, K. Acoustic profiles in vocal

emotion expression. Journal of Personality and Social
Psycology, 70, 3, 1996, 614-636.

[2] Munhall,K. G., Jones, J. A., Callan, D. E.,
Kuratate,T., and Bateson, E.V. Visual Prosody and
speech intelligibility: Head movement improves
auditory speech perception. Psychological Science, 15,
2 (Feb 2004), 133-137.

[3] Bregler, C., Covell, M., and Slaney, M. Video Rewrite:
Driving Visual Speech with Audio, In Proceedings of
ACM SIGGRAPH’97, 1997, 353-360.

[4] Brand, M. Voice Puppetry, In Proceedings of ACM
SIGGRAPH’99, 1999, Los Angeles, 21-28.

[5] Noh, J. Y., and Neumann, U. Expression Cloning, In
Proceedings of ACM SIGGRAPH’01, 2001, Los
Angeles, 277-288.

[6] Ezzat, T., Geiger, G., and Poggio, T. Trainable
Videorealistic Speech Animation. ACM Trans. On
Graphics (Proc. of ACM SIGGRAPH’02), 21, 3, 2002,
388-398.

[7] Kshirsagar, S., and Thalmann, N. M. Visyllable based
Speech Animation. Computer Graphics Forum (Proc.
of Eurographics’03), 22, 3, 2003, 631-640.

[8] Blanz, V., Busso, C., Poggio, T., and Vetter, T.
Reanimating Faces in Images and Video. Computer
Graphics Forum (Proc. of Eurographics’03), 22, 3,
2003, 641-650.

[9] Deng, Z., Bulut, M., Neumann, U., Narayanan, S.
Automatic Dynamic Expression Synthesis for Speech
Animation. In Proceedings of IEEE 17th International
Conference on Computer Animation and Social Agents
(CASA) 2004, Geneva, Switzerland, July 2004,
267-274.

[10] Parke, F. I., and Waters, K. Computer Facial
Animation. A K Peters, Wellesey, Massachusetts,
1996.



Figure 8: Some frames of synthesized head motion sequence, driven by the recorded speech “By day and
night he wrongs me; every hour He flashes into one gross crime or other...” from a Shakespere’s play.

[11] Pelachaud, N., and Badler, N., and Steedman, M.
Generating Facial Expressions for Speech. Cognitive
Science, 20, 1, 1994, 1-46.

[12] Ekman, P. and Friesen and W. V. Unmasking the
Face: A Guide to Recognizing Emotions from Facial
Clues. Prentice-Hall, 1975.

[13] Cassell, J., Pelachaud, C., Badler, N., Steedman, M.,
Achorn, B., Bechet, T., Douville, B., Prevost, S., and
Stone, M. Animated Conversation: Ruled-based
Generation of Facial Expressions Gesture and Spoken
Intonation for Multiple Conversational Agents. In
Computer Graphics (Proceedings of ACM
SIGGRAPH’94), 1994, 413-420.

[14] Perlin, K., and Goldberg, A. Improv: A System for
Scripting Interactive Actors in Virtual Worlds. In
Proceedings of ACM SIGGRAPH’96, 1996, 205-216.

[15] Kurlander, D., Skelly, T., and Salesin, D. Comic Chat.
In Proceedings of ACM SIGGRAPH’96, 1996, 225-236.

[16] Chi, D., Costa, M., Zhao, L., and Badler, N. The
Emote Model for Effort and Shape. In Proceedings of
ACM SIGGRAPH’00, 2000, 173-182.

[17] Cassell, J., Vilhjalmsson, H., and Bickmore, T. Beat:
The Behavior Expression Animation Toolkit. In
Proceedings of ACM SIGGRAPH’01, 2001, Los
Angeles, 477-486.

[18] Kuratate, T., Munhall, K. G., Rubin, P. E., Bateson,
E. V., and Yehia, H. Audio-Visual Synthesis of
Talking Faces from Speech Production Correlation. In
Proceedings of Eurospeech’99, 1999.

[19] Yehia, H., Kuratate, T., and Bateson, E. V. Facial
Animation and Head Motion Driven by Speech
Acoustics. In 5th Seminar on Speech Production:
Models and Data. 265-268.

[20] Costa, M., Chen, T., and Lavagetto, F. Visual
Prosody Analysis for Realistic Motion Synthesis of 3D
Head Models. In Proceedings of International
Conference on Augmented, Virtual Environments and
Three-Dimensional Imaging, 2001, 343-346.

[21] Graf, H. P., Cosatto, E., Strom, V., and Huang, F. J.
Visual Prosody: Facial Movements Accompanying
Speech. In Proceedings of IEEE International
Conference on Automatic Faces and Gesture
Recognition, 2002, 381-386.

[22] http://www.vicon.com

[23] http://skal.planet-d.net/demo/matrixfaq.htm

[24] Boersma, P. and Weenink, D. Praat Speech Processing
Software, Institute of Phonetics Sciences of the
University of Amsterdam. http://www.praat.org.

[25] Dasarathy, B. V. Nearest Neighbor Pattern
Classification Techniques, IEEE Computer Society
Press, 1991.

[26] Friedman,J. H., Bentley, J. L., and Finkel, R. A. An
algorithm for finding best matches in logarithmic
expected time. ACM Transaction on Mathematical
Software, 3, 3, 1977, 209-226.

[27] Hastie, T., Tibshirani,R., Friedman, J. The elements
of Statistical Learning: Data Mining, Inference and
Prediction. Springer-Verlag, 2001.

[28] Pierre, D. A. Optimization Theory With Applications.
General Publishing Company, 1986


