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Abstract— For in-vehicle systems, head pose estimation (HPE)
is a primitive task for many safety indicators, including driver
attention modeling, visual awareness estimation, behavior detec-
tion, and gaze detection. The driver’s head pose information is
also used to augment human-vehicle interfaces for infotainment
and navigation. HPE is challenging, especially in the context of
driving, due to the sudden variations in illumination, extreme
poses, and occlusions. Due to these challenges, driver HPE
based only on 2D color data is unreliable. These challenges
can be addressed by 3D-depth data to an extent. We observe
that features from 2D and 3D data complement each other. The
2D data provides detailed localized features, but is sensitive to
illumination variations, whereas 3D data provides topological
geometrical features and is robust to lighting conditions. Moti-
vated by these observations, we propose a robust HPE model
which fuses data obtained from color and depth cameras (i.e.,
2D and 3D). The depth feature representation is obtained with
a model based on PointNet++. The color images are processed
with the ResNet-50 model. In addition, we add temporal
modeling to our framework to exploit the time-continuous
nature of head pose trajectories. We implement our proposed
model using the multimodal driving monitoring (MDM) corpus,
which is a naturalistic driving database. We present our model
results with a detailed ablation study with unimodal and
multimodal implementations, showing improvement in head
pose estimation. We compare our results with baseline HPE
models using regular cameras, including OpenFace 2.0 and
HopeNet. Our fusion model achieves the best performance,
obtaining an average root mean square error (RMSE) equal
to 4.38 degrees.

I. INTRODUCTION
In the field of advanced driver-assistance systems

(ADAS), head pose estimation (HPE) of the driver is a
primitive task for determining several safety metrics for in-
vehicle systems. For example, HPE is a key technology for
determining driver attention modeling [27], [28]. HPE can
also be instrumental for other tasks such as predicting the
driver gaze [16], [17], [20], [21], [26] or estimating the
drowsiness level of a driver [43]. In addition to solutions
to facilitate safety systems, HPE also plays a key role in
improving driver-vehicle interfaces for navigation and info-
tainment purposes [1], [31]. As we transition to autonomous
vehicles, it is also important to identify the visual awareness
of the driver for take-over tasks [37]. These applications
highlight the need for robust in-vehicle solutions for HPE.

Earlier studies in HPE relied on hand-crafted features
extracted from 2D color images using classical machine
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learning methods [33]. With the recent advances in the field
of deep learning, neural network-based solutions have been
developed to estimate head pose from 2D color images [4],
[25], [29], [38], [42]. These methods can be classified into
facial landmark-based models [25], [29] and appearance-
based models [4], [38], [42]. The latter approach has the
advantage of eliminating the dependency on additional pre-
processing steps to determine facial landmarks.

The latest developments of time-of-flight (ToF) sensors
[9] have made it feasible to capture real-time depth data
using affordable cameras. The collection of 3D data has
promoted the rise of depth-based deep learning methods for
HPE. The most commonly used depth formats for HPE are
RGB-D [32] and point-cloud [14]. Since head movements
are continuous over time, the head pose does not undergo
drastic changes from one frame to the next, provided the
frames are captured at a sufficiently high frame rate. Thus,
examining the continuous trajectory of head pose over time
yields valuable insights for assessing the head pose in a new
frame. Therefore, temporal modeling is expected to improve
HPE. For example, Hu et al. [15] demonstrated that recurrent
neural networks (RNNs) are very effective in capturing the
relationship between nearby frames, leading to improvements
over a static method that independently processes each frame.

We expect color and depth images to provide unique and
complementary features. Figure 1 shows examples of frames
collected with color and depth cameras. The 2D color images
provide advantages including higher spatial resolution, and
details on specific features such as facial landmarks, and face
shape. The depth images provide structural and topological
details of the face that are not available with color images. In
driving scenarios, color images are less robust due to sudden
changes in external lighting conditions [18]. Whereas, depth
data is more reliable for variable lighting conditions as most
of the ToF sensors record distance from time delay of light
pulse rather than light intensities. However, depth data is
lower in resolution and misses the appearance-based features
that can be easily observed in color images. Multimodal
computer vision solutions that combine color and depth
images can benefit from their advantages, compensating for
their individual weaknesses.

This study leverages the complementary features provided
by color and depth images, providing a state-of-the-art mul-
timodal driver head pose estimation (MD-HPE) approach.
The proposed MD-HPE has three main stages. In the first
stage, we extract features from the color and point-cloud
frames. We use the ResNet-50 architecture [13] to process
the color images, and the PointNet++ framework [36] to



Fig. 1: Examples of frames for one subject in the MDM
database [22]. The images on the left are the 3D point-
cloud frames. Images on the right are the corresponding 2D
color frames. The figure depicts the complementary features
provided by the two modalities.

process the point-cloud data for each frame. In the second
stage, we model temporal information using long short-term
memory (LSTM) layers to capture the relationship between
head poses across consecutive frames. Then, we concatenate
the features from both modalities. In the third stage, we have
three individual fully connected layers each corresponding
to individual Euler’s angles (i.e., yaw, pitch, and roll). The
approach is trained by combining the three loss functions for
each of the corresponding Euler’s angles. The loss function
is a combination of classification loss (cross-entropy) and
regression loss (mean square error).

We build and test the proposed approach using the mul-
timodal driver monitoring (MDM) database [22], which is
a naturalistic driving corpus collected from 59 drivers. The
ablation study proves that the proposed MD-HPE fusion
model performs better than models implemented with in-
dividual modalities. We compare the proposed model with
baselines relying only on color images, including OpenFace
2.0 [2], HopeNet [38], and a baseline relying only on
depth images [15]. The results demonstrate the benefits

of combining 2D and 3D images to obtain a robust HPE
system. Our best model obtains a root mean square error
(RMSE) of 4.18◦ for yaw, 4.29◦ for pitch, and 4.68◦ for
roll. These results show that our novel approach improves the
accuracy, reliability, and robustness of head pose estimation
in challenging dynamic settings, such as driving scenarios.
The main contributions of our study are:

• We propose to combine features from the color and
depth images to robustly estimate head pose using
machine-learning strategies. This approach improves
accuracy by optimizing the feature set obtained after
combining complimenting features from the color and
depth modalities.

• We improve the reliability of the HPE algorithm by in-
corporating the depth modality. This strategy addresses
the key challenges of color cameras that are sensitive
to varying lighting conditions, sudden movements, and
facial occlusions.

• We explore optimal strategies to incorporate temporal
modeling in the model, leveraging the relationship be-
tween nearby frames.

• We provide extensive evaluations to assess the improve-
ments achieved by the proposed approach, which led to
state-of-the-art performance on the MDM corpus.

II. RELATED WORK

A. Head Pose Estimation with Color Images

The computer vision community has extensively studied
HPE, where most of these studies are based on color
images. Murphy-Chutorian et al. [33] and Czuprynski et
al. [6] provide detailed surveys on studies focusing on
HPE. Appearance-based models [38], [42] have recently
received increased attention due to the popularity of deep
learning. These HPE models offer two advantages. Firstly,
they decrease the need for additional pre-processing steps,
such as estimating facial landmarks. Secondly, the training
set can incorporate synthetic images to enhance accuracy
and robustness. Ruiz et al. [38] proposed a multi-loss con-
volutional neural network (CNN), which is trained on a large
synthetically expanded dataset. Yang et al. [42] proposed the
FSA-Net, which is based on fine-grained feature aggregation
and regression. The FSA-Net framework is a facial landmark
free method where the model is trained on spatial relation
in the feature map along with features. The feature maps are
spatially grouped before aggregation. This grouping is done
by defining learnable and non-learnable scoring functions
which evaluate the importance of the pixel-level features.

B. Head Pose Estimation with Depth Images

Recent advancements in depth-based sensors have moti-
vated vision researchers to use depth data for perceptual
tasks. This strategy is especially important for in-vehicle
safety systems where the external visible light conditions are
extremely variable, affecting regular color images. Template-
matching methods treat the head pose estimation as the
registration between the source point-cloud and the refer-
ence point-cloud. The head pose value is determined by
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Fig. 2: Proposed multimodal HPE framework. The model includes feature extraction, temporal modeling, and classification
layers. The features extracted from the color model (ResNet-50) and point-cloud model (PointNet++) are concatenated. The
details of the feature extractor in PointNet++ is shown in Figure 3 and Table I. The temporal modeling is optional and is
implemented with the LSTM blocks labeled with L1, L2, and L3 (dashed lines). The model has unique loss values for each
of the Euler’s angles (yaw, pitch, and roll).

optimizing the registration technique to get the best trans-
formation. For example, Bar et al. [3] and Meyer et al.
[30] used template matching with the iterative closest point
(ICP) algorithm to estimate head pose from depth data.
These template-based methods can be highly sensitive to
challenges in driving scenes due to facial occlusions and
varying illuminations. These conditions may lead to error
in registration and incorrect transformations. Another depth-
based HPE approach used regression forests on RGB-D data
[8].

Hu et al. [14] proposed the first end-to-end deep learning-
based HPE method on point-cloud data. This method is based
on the PointNet++ framework [36] with a revised set of
abstraction layers. PointNet++ has hierarchical abstraction
layers to extract both local and global features from the
point-cloud data. This approach uses five levels of abstraction
layers followed by a 6D regression model. Hu et al. [15]
further extended their study by implementing a temporal
model with Bidirectional long short-term memory (BiLSTM)
layers after the spatial feature extraction. PointNet++ is a
rotation-invariant depth model. State-of-the-art depth models
which are rotation equivariant [5], [39] can also be used to
solve head pose with respect to a reference frame.

C. Head Pose Estimation by Fusing Color and Depth Images

There are very few methods that explore the fusion of
features from multimodal data for HPE. Mukherjee et al.
[32] estimates head pose from RGB-D data. This method
fuses RGB and depth features by taking the average of the
class posterior scores from the color and depth classifiers.
Li et al. [29] fused features from color and sparse point-
cloud consisting of 3D-facial landmarks. In this method,
features are extracted through graph convolutional network
(GCN). A limitation of this approach is that the local features
from the depth data are ignored and only the global features
such as facial landmarks are considered. Wang et al. [41]
used multi-frame point-cloud registration for HPE. In this
method, the gaze region is also estimated by using the

segmented eye region of the color image and the estimated
head pose. Our proposed MD-HPE approach is different
from these studies, since (1) it strategically combines at the
model level information from color and depth cameras, using
both information to predict head pose, (2) it leverages the
entire information conveyed in the color image and the point-
cloud data, (3) it captures temporal information to exploit
the relation between nearby frames, and (4) it demonstrates
its performance on a naturalistic driving database achieving
state-of-the-art HPE performance.

III. PROPOSED APPROACH

This paper proposes a fusion network for HPE, which
extracts complimentary features from the color images and
point-cloud data. Figure 2 shows the overview of the pro-
posed network. The network contains three main stages
including feature extraction, temporal modeling, and classi-
fication layers. This section presents details about the fusion
network and the loss function.

A. Feature Modeling

In the feature extraction stage, the color frames are mod-
eled with the ResNet-50 network [13], which is pre-trained
with the ImageNet database [7]. The output of the ResNet-
50 network is a 2,048-feature vector, which serves as one of
the inputs of our model. The next block is a fully-connected
(FC) layer with 256 nodes that project the feature vector into
a reduced embedding.

For point-cloud data, we rely on the PointNet++ frame-
work [36] to obtain a discriminative feature representation
from the depth data. PointNet++ extracts both fine-grained
local and global features from depth data. In PointNet++,
the feature extraction layer is referred to as set abstraction
layer. In our network, we implement five set abstraction
layers in series. Initial layers extract local features and the
later layers extract global features from the point-cloud.
Each set abstraction layer is constructed with three blocks:
sampling, grouping, and PointNet as shown in Figure 3.



TABLE I: Implementation details for the five set abstraction
layers (sampling, grouping and PointNet layers). m repre-
sents the number of anchor points that are chosen for the
sampling operation. dc = 3 is the dimension of the input
coordinate system (i.e., x, y, and z). r represents the radius
of the ball query for the grouping operation. l represents the
number of points within r to be chosen in the grouping step.
df is the feature dimension of the previous set. For the first
set, df=dc=3.

Layer Specification Output Dimension

Sampling m=512 [m=512,dc=3] (S1)
Grouping [r=0.1,l=4] [m=512,df=3,l=4] (G1)

[r=0.2,l=8] [m=512,df=3,l=8] (G2)
[r=0.4,l=16] [m=512,df=3,l=16] (G3)

PointNet [8,8,16] [512,16] (T1)
[16,16,32] [512,32] (T2)
[16,24,32] [512,32] (T3)

[512,80] (T4)
Sampling m=256 [m=256,dc=3]
Grouping [r=0.15,l=8] [m=256,df=83,l=8] (G4)

[r=0.3,l=16] [m=256,df=83,l=16] (G5)
[r=0.5,l=24] [m=256,df=83,l=24] (G6)

PointNet [16,16,64] [256,64]
[32,32,64] [256,64]
[48,48,96] [256,96]

[256,224]
Sampling m=128 [m=128,dc=3]
Grouping [r=0.15,l=8] [m=128,df=227,l=8]

[r=0.3,l=16] [m=128,df=227,l=16]
[r=0.5,l=24] [m=128,df=227,l=24]

PointNet [16,16,64] [128,64]
[32,32,64] [128,64]
[48,48,96] [128,96]

[128,224]
Sampling m=64 [m=64,dc=3]
Grouping [r=0.2,l=16] [m=64,df=227,l=16]

[r=0.4,l=32] [m=64,df=227,l=32]
[r=0.8,l=48] [m=64,df=227,l=48]

PointNet [32,32,64] [64,64]
[48,48,64] [64,64]
[64,64,128] [64,128]

[64,256]
Sampling m=1 [m=1,dc=3]
Grouping [r=inf] [64,259]
PointNet [256,256,256] [256] (T5)

For the sampling block, the method selects a predefined
number (m) of anchor points from the point-cloud data
using the iterative farthest point sampling (IFPS) algorithm.
The set with the sampled anchor point is denoted by S.
For the grouping block, the goal is to group neighboring
points to the anchors. The approach relies on the ball query
algorithm. Since the density of points in the point-cloud
is not uniformly distributed, the approach extracts robust
features using the multi-scale grouping (MSG) method [36].
In the MSG method, grouping is done at multiple scales of
resolution. Our implementation uses three different scales of
resolutions: G1, G2, and G3 on each of the anchor points
(see Table I for the parameters used in our model). For the
PointNet block, the goal is to obtain local patterns that are
discriminative for the HPE task. PointNet captures point-to-
point relations in a local region and transforms features into
higher-dimension representations. The PointNet [35] consists
of three multilayer perceptron (MLP) layers with shared

Fig. 3: Set abstraction layer in the PointNet++ [36], including
sampling, grouping, and PointNet layers. The framework
directly uses point-cloud data without projecting the 3D
points into 2D spaces.

weights and a max pooling at the end. At each anchor point,
the three multi-scale groups are transformed by the PointNet
network into higher dimension features (T1, T2, T3). These
multi-scale group features (T1, T2, T3) are concatenated into
a single feature set (T4), as implied in Table I. In our model,
we also use a series of five set abstraction layers. Similar
to CNN, the initial layers extract local features and later
layers add global features. In the series of five set abstraction
layers, the output from the PointNet layer of an abstraction
layer will be the input for the sampling layer in the next
abstraction layer. The first four abstraction layers follow
the same implementation with different sampling sizes and
grouping scales (see Table I). However, the last abstraction
layer has only one anchor point in the sampling layer. In
the grouping layer, all points are grouped together with
an infinite radius. In the PointNet layer, weighted average
pooling is used instead of max pooling. The final feature set
(T5), is a 256-D vector. Table I shows the implementation
details of each set abstraction layer.

B. Temporal Modeling

In our approach, we employ long short-term memory
(LSTM) layers to capture temporal information from con-
secutive frames. However, we need to experiment with the
optimal placement of these LSTM layers in our imple-
mentation since it remains unclear the optimal placement.
Figure 2 shows our model, which includes three LSTM
blocks referred to as L1, L2, and L3. After the feature
extraction layers, the L1 and L2 blocks process the color
and depth modalities, respectively. The L1 and L2 blocks
each consists of 128 neurons. The L3 block is implemented
after concatenating the feature representations from both
modalities, and it encompasses 256 neurons to account for
the concatenated feature representations. These three LSTM
blocks are denoted by dashed lines to indicate their optional
usage. In Section V, we will evaluate various configurations
to determine the most effective placement of these LSTM
layers. In scenarios where L1 and L2 are not employed (i.e.,
when there is no temporal model or only L3 is utilized), we
concatenate the 256-dimensional color and 256-dimensional
depth features to create a 512-dimensional feature vector.

C. Classification Layers

After the LSTM, the feature representation is used as input
to three separate FC layers to predict the Euler’s angles (i.e.,
yaw, pitch, and roll). Inspired by the multi-loss function



used in the fine-grained HPE approach proposed by Ruiz
et al. [38], we solve this problem with a combination of
classification and regression losses. The classification loss is
formulated with the cross entropy (CE) loss. The estimated
head pose is assumed to be in the range from -99◦ to
+99◦. We split the angles into 66 bins, where each bin
corresponds to an angle of 3◦. The FC layer does multi-
class classification with a softmax activation. The output of
the FC layer is the probability distribution across the 66
classification bins. The cross-entropy is calculated between
the probabilistic distributions of labeled and predicted bins.
The regression loss is computed with the mean square error
(MSE) loss between the labeled and predicted angles. The
final loss function is formulated as a linear combination of
the classification loss (LCE) and regression loss (LMSE),
using the scaling factor α:

L = LCE + αLMSE (1)

The idea behind the multi-loss approach is to guide the
model to predict the neighboring angles for the head pose
using the classification loss. Then, the regression loss leads
the model to predict the fine-grained pose. The error is
independently back-propagated for each branch since we use
three separate FC layers for yaw, pitch, and roll.

IV. EXPERIMENTAL SETTINGS

This section discusses the experimental settings, starting
with the details of the MDM database, which is used to
train and assess the proposed approach. We also describe
the ground truth labeling and calibration approaches required
for the evaluation. Additionally, we provide the details on the
infrastructure used to conduct the evaluation.

A. MDM Database

We train the network with the multimodal data monitor-
ing (MDM) database [22], which is a naturalistic driving
corpus collected from 59 gender-balanced subjects. The data
includes a set of in-vehicle sensors, including four RGB
cameras, a time-of-flight (ToF) camera, and a microphone
array. Additionally, a controller area network bus (CAN-Bus)
is used to record the dynamic information of the vehicle. The
2D color data is collected with four GoPro HERO6 cameras
placed to record (1) the frontal view of the driver’s face, (2)
the semi-profile view of the driver’s face as viewed from the
rear mirror, (3) the back side of the driver’s head to record
the Fi-Cap helmet [19], and (4) the road view. The color data
is collected at a frame rate of 60 frame per second (FPS)
at a resolution of 1920×1080. We implement our color-
based model with the data obtained with the frontal view
camera. The depth data is collected with a PMD Picoflexx
camera, which recorded the frontal view of the driver’s face.
Picoflexx captures both point-cloud and gray-scale infrared
frames at a maximum frame rate of 45 FPS and a resolution
of 224×171. Figure 1 shows an example of the color and
point-cloud frames for a subject. More details on the data
collection protocol are given in Jha et al. [22].

The key feature of the corpus is that the ground truth
head-pose labels can be determined for continuous frames by
tracking the Fi-Cap helmet [19]. The Fi-Cap is a helmet with
23 predefined 2D fiducial markers called AprilTags [34]. This
helmet can be partially seen in Figure 1, and it is exclusively
used to extract the ground truth (i.e., it is not used during
inference). The Fi-Cap helmet is worn on the back of the
driver’s head, preventing face occlusions when recorded with
a frontal view. The camera behind the driver recorded the
Fi-Cap helmet for all the frames. The ground truth head-
pose labels are determined by comparing the orientation and
position of Fi-Cap helmet between the selected and reference
frames. The position of these 2D markers can be detected
with vision algorithms [40]. The Kabsch algorithm [23] is
used to determine the relative orientation and position of the
Fi-Cap helmet in each intermediate frame with respect to a
reference frame. Jha and Busso [19] provide more details on
how to extract the head-pose of the driver from the Fi-Cap
helmet.

Each of the subjects might wear the Fi-Cap helmet in
relatively different orientations. Moreover, within a subject’s
recording, the Fi-Cap orientation can slightly change during
the recordings due to the continuous movement of the vehicle
and the driver’s head. Therefore, we need a calibration
process for the ground truth labels to be defined uniformly
across and within the subjects. We use the multiple local
reference frame (LRF) calibration approach proposed by Hu
et al. [15]. In this calibration process, one of the frontal
frames from one subject is manually selected to be the global
reference (GR) frame. The head pose of the GR frame is esti-
mated using OpenFace 2.0 [2]. For each subject, a number of
frames that have the closest rotation angles to the GR frame
are chosen as the local reference (LR) frames. The rotation
matrix of the LR is denoted as RLRF . For each LR frame, the
face region in the point-cloud data for the LR and GR frames
is cropped. Then, the ICP algorithm is run between the GR
and LR point-cloud data to find a transformation between
them. This transformation matrix (RLocalGlobal ) is used to
compensate for the differences in Fi-Cap orientation between
the LR and GR frames. Finally, the calibration matrix (Rc)
for each LR is determined as Rc = RLocalGlobalRLRF .
For a frame at time t, with rotation RFiCap, the closest
LR is determined by the timestamp, and the final head-pose
rotation is calibrated as Rt = R−1

c RFiCap.

Rc = RLocalGlobalRLRF (2)

Rt = R−1
c RFiCap (3)

As the color and depth sensors record frames at different
frame rates, a clapping board was used at the beginning of
the recording to temporally synchronize different sensors.
We align the intermediate frames based on the time elapsed
from the reference clapping frame to the current frame. In
the pre-processing of the color frames, we crop the original
image leaving only the face region with a 2D bounding box
determined by the OpenFace 2.0 toolkit [2]. The smallest



TABLE II: Ablation study without temporal modeling (e.g.,
without LSTM layers). This table compares the performance
of the HPE methods implemented with (1) only color images,
(2) only depth data, and (3) color and depth information.

Modality Error Y
(◦)

P
(◦)

R
(◦)

Mean
(◦)

RGB RMSE 5.48 5.72 5.98 5.72
MAE 3.85 4.18 4.54 4.19

Depth RMSE 6.44 5.50 5.74 5.89
MAE 4.14 3.75 4.05 3.98

Fusion RMSE 5.08 4.65 4.92 4.88
MAE 3.73 3.32 3.77 3.60

side of the cropped image is resized to 224 and the biggest
side is resized to 224 multiplied by the aspect ratio of the
bounding box. Next, a random crop is done such that the
final image size is 224×224. With this approach, the image
is resized to 224×224 while preserving the aspect ratio of
the bounding box for the face. Finally, the image intensities
are normalized per channel.

For point-cloud data, we use distance-based and statistical
filters to remove points that are clearly part of the back-
ground. Then, we use a voxel grid downsampling approach
to sample 5,000 points from each of the point-cloud frames.
Each point-cloud frame is normalized such that the centroid
is at the origin, and all the points lie inside a unit sphere.
The dataset is partitioned into a train set (39 drivers), a
development set (10 drivers), and a test set (10 drivers).

B. Model Settings

The model is trained using the ADAM optimizer [24] with
initial learning rate set to 0.001 and a learning rate decay of
0.7 per 75,000 steps. The scaling factor α is set to 0.1 in
the loss function (Eq. 1). The fusion model is implemented
using TensorFlow and trained using an NVIDIA GeForce
RTX 3090 Ti GPU.

V. EXPERIMENTAL RESULTS

In this section, we provide a detailed ablation study of
our model, and we compare with state-of-the-art baselines.
In our study, we use the root mean square error (RMSE) and
the mean absolute error (MAE) as the metrics to evaluate
the performance.

A. Ablation Study

We perform extensive experiments to analyze the per-
formance improvement attained by our model when we
(1) fuse depth and color images, and (2) add temporal
modeling layers. Table II shows the HPE results when
using color, depth, and the combination of both modalities.
For this analysis, we do not include any LSTM blocks,
independently estimating the results for each frame. The
table shows that the errors consistently drop when jointly
using both modalities. This result shows that the valuable
complementary features offered by incorporating both color
and depth modalities can improve HPE.

Table III shows the results when adding the LSTM blocks.
We evaluate different configurations. The first part of the

TABLE III: Ablation study comparing the performance of
the HPE method with temporal modeling implemented with
(1) only color images followed by the L1 LSTM layer, (2)
only depth data followed by the L2 LSTM layer, (3) fusion
without temporal modeling, (4) fusion followed by the L1
and L2 LSTM layers, and (5) fusion followed by the L3
LSTM layer.

Modality L1 L2 L3 Error Y
(◦)

P
(◦)

R
(◦)

Mean
(◦)

RGB ✓ ✗ ✗
RMSE 4.38 6.10 6.52 5.60
MAE 2.92 4.52 4.91 4.11

Depth ✗ ✓ ✗
RMSE 4.94 5.04 5.21 5.06
MAE 3.54 3.85 3.56 3.65

Fusion ✗ ✗ ✗
RMSE 5.08 4.65 4.92 4.88
MAE 3.73 3.32 3.77 3.60

Fusion ✓ ✓ ✗
RMSE 4.57 5.36 5.56 5.16
MAE 3.32 4.18 4.33 3.94

Fusion ✗ ✗ ✓
RMSE 4.18 4.29 4.68 4.38
MAE 3.02 3.32 3.42 3.25

Fig. 4: Examples of HPE results obtained with the proposed
multimodal method displayed on the 2D images. The blue
axis points towards the front of the face, the green axis points
downward and the red axis points to the side (Pred: predicted
angles, GT: ground truth angles).

table reports the results obtained by adding either L1 or
L2 to the unimodal systems. When we compare the results
without a temporal model (Table II) and with a temporal
model (Table III), we observe improvements, indicating that
leveraging the relationship between consecutive frames is
important. Table III also compares the HPE performance
achieved when adding L1 and L2, and when adding only
L3. The most effective strategy is adding the LSTM block
after the concatenation (i.e., L3). This model outperforms all
other implementations of our framework.

Figure 4 shows six examples with actual and predicted
head poses using the proposed model.

B. Comparison with Baselines

We compare our proposed model to several unimodal
baselines. We use our model implemented with the L3 block.



TABLE IV: Comparison of proposed HPE model with uni-
modal baselines. The table shows results using the RMSE
metric.

Model Y (◦) P (◦) R(◦) Mean(◦)
OpenFace 2.0 [2] 5.06 7.20 7.63 6.63
HopeNet [38] 6.29 8.09 6.62 7.0
Hu et al. [15] 4.69 5.30 5.63 5.20
Proposed Model 4.18 4.29 4.68 4.38

For this analysis, we only consider RMSE results. First,
we consider color-based HPE using OpenFace 2.0 [2], and
HopeNet [38]. Table IV shows that the proposed multimodal
model provides better predictions than these systems. Sec-
ond, we compare our approach with the temporal model
presented by Hu et al. [15], which uses only point-cloud
data. This model is better than the color-based baselines.
However, our multimodal approach clearly leads to better
results. The key advantage of our approach is the use of
color and point-cloud images, leveraging the complementary
features provided by 2D and 3D images.

VI. CONCLUSIONS

This paper proposed an HPE model that effectively com-
bines color images and depth data. The multimodal approach
takes advantage of the spatial resolution provided by color
images and the structural information provided by the depth
data. The approach also incorporates temporal modeling
leveraging the relationship between the head pose across
nearby frames. It demonstrates high accuracy and robustness
in naturalistic in-vehicle recordings. Experimental evalua-
tion indicates that the fusion model outperforms similar
approaches implemented solely with color or depth infor-
mation. Furthermore, it achieves improvements over state-
of-the-art unimodal baselines for HPE.

As part of our future work, we are planning to improve
the model to achieve robustness even when some modalities
are missing. Studies in other multimodal problems have
demonstrated that this is possible [10]–[12]. This is important
since in-vehicle scenarios often include cases with missing
or corrupted features (e.g., saturated color images due to
extreme illumination, occlusion of the face due to steering
wheel operation). In such scenarios, we still need the model
to be robust and reliable. Another promising future direction
is to enhance this framework by using rotation equivariant
models to process the color and depth images.
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