Robust Driver Head Pose Estimation in Naturalistic Conditions from Point-Cloud Data

Tiancheng Hu, Sumit Jha and Carlos Busso

Motivation

Head pose estimation is an important task

- With applications in areas including
 - advanced driver assistance system [Murphy-Chutorian et al. 2007]
 - visual attention modelling [Ba and Odobez 2009]
 - gaze estimation system [Zhang el al. 2015]

In the automotive domain, it is a challenging task due to

(a) Occlusion

(b) Extreme head pose

(c) Illumination

Time-of-Flight Depth Camera

Time-of-flight camera

- Utilize active infrared lighting
- Calculate distance between camera and object based on round trip time
- Immune to illumination change!

We adopt a pico flexx camera, which provides

point cloud data

grayscale image

Image credit: https://pmdtec.com/picofamily/flexx/

Related Work

Point Cloud Processing

- Wu et al. (2015) represents point clouds as 3D voxel grids and use 3D CNNs to process them
- Su et al. (2015) renders 2D images from point cloud at different angles and process the set of 2D images using CNNs
- PointNet [Qi et al. 2017 ICCV] and PointNet++ [Qi et al. 2017 NIPS] directly process 3D point-cloud data without converting to any other intermediate representation

Driver Head Pose Estimation

- Borghi et al. (2017) utilizes a multi-modal approach, with CNNs trained on RGB, depth map, and optical flow data which are then fused to predict head pose
- Schwarz et. al (2017) proposes a CNN based model which fuses information from infrared images and depth maps and regresses head pose

PointNet++ [Qi et al. 2017 NIPS]

Multi-scale, Multi-layer Feature Extraction

skip link concatenation

Task specific layers

Model — Directly Process Point Cloud Data

Set Abstraction Layer

- Sampling: iterative farthest point sampling, resulting in N "anchor points"
 - Motivation: Point clouds are usually large and contain redundant points
 - Goal: Decrease redundancy while maintaining useful information
- **Grouping**: group points within a radius **R** of the "anchor points"
 - Motivation: CNN captures the local features of a neighborhood
 - Goal: Capture the relationship between anchor points and the neighborhood

Represent rotation in 6D, according to Zhou et al. 2019

Model — Directly Process Point Cloud Data

Set Abstraction Layer

- PointNet: multi-layer perceptron to lift the feature up to a higher dimension
 - Motivation: Just as many deep learning networks, we need to extract high-level feature
 - Goal: find a discriminative feature representation
- Each set abstraction layer has different N and R values to capture features of different scale
- Multiple set abstraction layer stacked together to extract high-level feature

Dataset

Multimodal Driver Monitoring (MDM) Dataset

- 4 GoPro RGB cameras, 1 pico flexx depth camera
- Naturalistic driving with a diverse range of head poses
- Head pose labels provided by Fi-Cap [Jha and Busso 2018]
- 59 subjects (27 male 32 female, mostly college students)
 - Used 22 in this study, total duration 17 hours 39 minutes

Setup - Sensors

ITY OF TEXAS AT DALLAS

Example data from different sensors

Setup - Markers

Protocol — Phase 1

- Phase 1: Natural Gaze (Parked Vehicle)
 - Subject asked to look at target markers on the windshield in random order
 - Subject asked to look at a trackable marker that the researcher moves around in front of the car

Protocol — Phase 2

- Phase 2: Natural task Driving
 - Subject asked to follow navigation on a smart phone
 - Multiple destinations in sequence
 - Subject asked to change radio channels when driving

Protocol — Phase 3

- Phase 3: Natural Gaze Driving
 - Subject asked to look at landmarks on the road and answer questions
 - Subject asked to look at points on the windshield

Training Details

Point Cloud Preprocessing

 Distance-based filtering -> grid-based sampling -> 5000 points -> normalized (centroid at (0,0,0), all points in unit sphere)

Rotation Representation

- Represent rotation in 6D, according to Zhou et al. 2019
- Easily convertible to full rotation matrix

Training Detail

- Train:14 subject; development: 4 subject; test: 4 subject
- Adam optimizer, learning rate = 0.001 with learning rate decay of 0.7 per 2 million steps
- L2 loss

Baseline Approaches

- OpenFace 2.0 [Baltrušaitis et al. 2018]
 - State-of-the-art (SOTA) toolkit for face analysis, including head pose estimation
- Face Alignment Network (FAN) [Bulat and Tzimiropoulos, 2017]
 - One of the SOTAs for facial landmark estimation
 - Use singular value decomposition to get rotation from landmarks
- For Both
 - Full resolution (1920x1080) RGB image captured from GoPro is used as input
 - To avoid difference in angle definition: Subject-wise transformation applied between baseline prediction and ground truth

Result — Test Set Ground Truth Distribution

log10 scale

Yaw angles

Most Data in this region

Result — OpenFace 2.0 Detection Failure

4.8%

Fails in mostly frames with larger rotation

Result — FAN Detection Failure

2.1%

Better than OpenFace Failure also concentrated in larger ground truth rotation

Result — Proposed Method

0%

No head detection needed Thus 0% detection failure

Results — Mean Squared Error

	Errors (Model Set)		
	Roll(°)	Yaw(°)	Pitch(°)
Proposed Model	5.91	7.32	6.68
	Errors (OpenFace Set)		
	Roll(°)	Yaw(°)	Pitch(°)
Proposed Model	5.48	7.15	6.39
OpenFace 2.0	9.32	6.21	8.42
	Errors (FAN Set)		
	Roll(°)	Yaw(°)	Pitch(°)
Proposed Model	5.66	7.24	6.53
FAN	11.30	19.28	8.47

Result — Result Comparison — Geodesic Distance

- Proposed model has lower error overall
- Error especially lower in large yaw rotations

Conclusion & Future Work

Ours: 1st deep learning based head pose estimation algorithm directly from

point cloud

Evaluated on Multimodal Driver Monitoring dataset

- Achieve better performance than the baselines
- Model reliable overall, especially in large rotations
- Future Work
 - Multimodal approach (depth, RGB and more) to jointly model head pose
 - Temporal modelling for driver head pose
 - Build a more parameter-efficient model for real-time applications

Thank you

 This work was supported by Semiconductor Research Corporation (SRC) / Texas Analog Center of Excellence (TxACE), under task 2810.014.

Our Research: msp.utdallas.edu