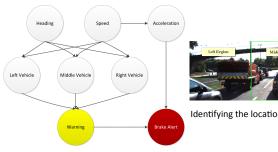


Adjacent Vehicle Collision Warning System using Image Sensor and Inertial Measurement Unit

Asif Iqbal, Carlos Busso and Nicholas R. Gans – Department of Electrical Engineering, The University of Texas at Dallas


Motivation:

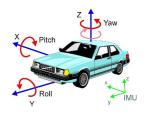
- A driver alert system to prevent and mitigate adjacent vehicle collisions by proving warning information of onroad vehicles and possible collisions.
- These waring to the driver can reduce the high number accidents and deaths on road.
- > Fusion of modalities may outperform single modality

Methodology:

A dynamic Bayesian network (DBN) is fuses **vision** and **motion** measurements to provide driver awareness.

The network is parameterized using Expectation Maximization algorithm.

Dynamic Bayesian Network Model


- Vision A histogram of oriented gradient (HOG) feature based classifier is used to detect any adjacent vehicles and their location corresponding to the ego-vehicle.
 - Vehicles both side and rear-end images were used in training.

Examples of HOG Features from rear-end and side vehicle

- Motion Ego vehicles heading, speed and acceleration are calculated from an IMU and fed into the DBN.
 - Heading- left, straight or, middle
 - Speed low or, high
 - Acceleration increasing or, decreasing.

Results:

The proposed system as tested on public datasets, including KITTI, Toyota Motor Europe (TME) Motorway Dataset, etc.

Average Precision of Vehicle Detection

						_	_				
,	•										
	o				_		_	_			
s	o ——							_			
4	o —				-			_			
3	• —				-		-	_			
2	• —				_		-	_			
-	• —				_		-	_			
	КІТТІ		Lisa Vehicle Detection		Malaga Stereo and Laser Urban Data Set						
			Front	Vehicle	Side	e vehicle					

Performance of Collision Avoidance System

		Ca	Failure Rate			
Γ	Heading	Speed	Acceleration	Vehicles Detected	Warning	Brake Alert
Γ	Straight	Low	Hidden	Yes	5%	No alert needed
	Straight	Low	Increasing	Yes	3%	22%
	Straight	High	Increasing	No	6%	No alert needed
	Straight	Hidden	Decreasing	Yes	5%	13%
F	Right	High	Hidden	Yes	8%	26%
	Right	Low	Increasing	Yes	4%	17%
	Left	Low	Increasing	Yes	3%	17%
	Left	High	Increasing	No	4%	No alert needed
	Left	High	Decreasing	Yes	9%	19%

No Warning, as no vehicles and low speed

Both Warning & Brake Alert are issued, as high acceleration with adjacent vehicles created a possible collision.

Both Warning & Brake Alert are issued, a high acceleration

Warning Issued

Discussion:

- Experimental analysis demonstrated the model issued possible alert and warning in several test conditions.
- The future work will focus on using more sensors in the network, improving vehicle detection performance and collecting more data for network parametrization.