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Detecting Driving Distraction at MSP

•  Key Problems:

•  Detect inattentive drivers using noninvasive sensors

•  Study realistic scenarios with real car driving in real roads 
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Drivers’ Visual Attention
•  Primary driving related task

•  Mirror checking actions (situational awareness)

•  Lane change

•  Turns and cross sections

•  Secondary tasks 

•  Visual Distraction for longer duration or one with high angle 
generally involves more head movement.[Zhang, 2008]

•  Cognitive distraction (“looking but not seeing”)
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Motivations

•  Gaze detection is a challenging problem in car environment

•  It is often approximate by head position [Lee et al., 2011]

•  Coarse direction of driver’s gaze is enough for most in-
vehicle applications [Tawari & Trivedi, 2014; Doshi & Trivedi, 2009]

•  Goal of this study is to analyze the relationship between 
gaze and head pose
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Objective

• Questions

•  How well does the head pose of the driver represent his/her gaze 
(visual attention)?

•  How much does the head pose varies when the driver is looking at 
a certain direction?

•  Can we define a confidence map for the drivers’ gaze (visual 
attention) using head pose?
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Experimental Design
•  Markers placed at the windshield and other locations of visual   

interest (mirrors, blind spot) in the UTDrive platform
•  Participants are asked to look at markers

Unconstrained: “look at the point #4” 

•  When the car is parked
•  When the subject is driving

Constrained: “head pose directed towards the mark” 

•  When the car is parked
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Unconstrained Condition
•  Natural head poses

•  Driver asked to look at various locations without 
further instructions

•  Collected when the car is parked and when driving

•  Multiple reading for each mark to capture the variance
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Constrained Collection

• We use a glasses’ frame with laser 
pointer at the center 
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•  The participants wore the frame, pointing to the target 
marks
•  Helps to establish a reference head pose without bias due to 

pupil movement (i,e., head pose = gaze)
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Data Collection
•  Cameras placed to record the driver’s face and the road scene.

•  Used commercially available Dash camera (Blackvue 
dr650gw 2 channel) for the recording
•  Front camera for the road and rear camera for 

driver’s face
•  Also records GPS and accelerometer data

•  Pilot recording with four participants
•  Markers are randomly asked
•  Operator marked when the subject looks at markers 
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Data Collection (cont.)
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Head Pose Estimation
•  Used CMU’s Intraface tool for head pose estimation

•  Yaw, pitch and roll
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Very accurate when head pose 
is directed toward this area
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Head pose variability per marker
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• Observations

•  Pitch highly unpredictable, 
low correlation with gaze 
direction

•  Yaw angle has high 
correlation

•  The mean of the angles 
have linear relationship

•  The variance increases as 
the gazes direction 
increases
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Mapping head pose to markers
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•  We train regression model to map head pose into x,y coordinates

•  Input variable: head pose angle 

•  Output variable: x or y coordinate in the windshield (in pixels)

•  We use constrained recordings where we know the intended coordinates  

•  Ellipsoids define confidence regions

Estimated
x

= ↵0 + ↵1 tan(yaw)

Estimatedy = ↵0 + ↵1 tan(pitch)

Unconstrained - parked Unconstrained - driving
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Mapping head pose to markers (cont.)
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Unconstrained - parked Unconstrained - driving

•  Observations

•  More variance (hence less predictability) when driving

•  The length of the line represents the bias due to pupil movement between head 
pose and actual gaze

•  The bias increases as the direction moves away from the frontal pose

•  Clear separation of gaze zones (front vs left)
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Head pose / gaze bias

•  Bias increases for markers away 
from the center
•  Pupil movement is important

•  Bias completely determines the 
vertical location 
•  Slope in vertical direction is 1
•  No dependency on head pose
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Discussion

•  High correlation in horizontal direction between head 
pose and gaze

•  Low correlation in the vertical direction

•  Most of the applications requires the knowledge of 
horizontal gaze (eg. blind spot, mirror checking etc.)

•  Coarse estimation of gaze is possible using head pose 
which gives a general direction about visual attention
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Challenges

•  Getting accurate head pose for highly skewed rotation
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•  Perspective mapping of point on the windshield to 
actual object in the road scene
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Future work
•  Use probabilistic modelling approach to get confidence 

level on various gaze location given a certain head pose

•  Use road scene and contextual information for added 
confidence

•  Extend the model to points not on the windshield 
(mirrors, windows, speedometer dial, radio etc.)
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P (gaze(x, y)|yaw , pitch, roll)
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Thank you!

Questions?
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