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Drivers’ Visual Attention

• Primary driving related task

• Mirror checking actions (Li and Busso, 2016)

• Lane change

• Turns and cross sections

• Secondary tasks 

• Mobile Phones and In-vehicle entertainment unit

• Co-passengers in the car

• Billboards and other distractions from the environment

2



msp.utdallas.edu

Motivations

• Gaze detection is a challenging problem in car 

environment

• It is often approximated by head pose [Lee et al., 2011]

• Coarse direction of driver’s gaze is enough for most in-

vehicle applications [Tawari & Trivedi, 2014; Doshi & Trivedi, 2009]

• Goal of this study is to analyze the relationship 

between gaze and head pose
3
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Objective
• Questions

• How well can we estimate the head pose in a real world 

driving environment?

• How well does the head pose of the driver predict his/her 

gaze (visual attention)?

• How much does the head pose varies when the driver is 

looking at a certain direction?
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Outline

• Data collection

• Performance of head pose estimation

• Gaze estimation using linear regression

• Study of eye movement bias

• Conclusion
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Data Collection

• To relate the facial image to ground truth gaze locations

• UTDrive platform

• Dash Cameras used instead of the                                           

on-board equipment

• (Blackvue dr650gw 2 channel)

• 2 channel camera 

• with WiFi, GPS and accelerometer
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Experimental Setup

• Rear camera  Face

• Front camera  Road

• Markers placed at the windshield (1-13), mirrors(14-

16), side windows (17-18), speedometer panel (19), 

radio (20), and gear (21)

• Data collected with 16 subjects (10 males, 6 females) 

in three phases.
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Phase 1

(Natural Gaze – Parked Vehicle)

• Collected in a parked car

• Subject asked to look at each point multiple  

times

• Natural variability in head pose without the 

constraint of driving task

• The driver familiarizes to the core task
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Phase 2

(Natural Gaze - Driving)

• Collected when the subject is driving the car

• Subject asked to look at points

• Data collected in a straight road with minimum 

maneuvering task
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Phase 3 

(Controlled Gaze – Parked Vehicle)
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• Direct head pose toward markers

• Head pose ≈ gaze 

• No bias due to eye movement

• Difficult to achieve naturally

• Used a glass frame with laser mounted                                 

at the center 

• Subjects point at the target marks with 

the beam
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AprilTags for Head Pose 

Estimation
• Head pose estimation challenging in driving 

environment

• AprilTags (Olson, 2011): 2D barcodes that can be 

robustly detected in an image

• Headband designed with 17 AprilTags

• Useful for robust detection of head pose across 

conditions
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Outline
• Data collection

• Performance of head pose estimation

• Question 1: How well can we estimate the head 

pose in a real world driving environment?

• Gaze estimation using linear regression

• Study of eye movement bias

• Conclusion

12



msp.utdallas.edu

Performance of Head pose 

Estimation Algorithm

• Head Pose estimation challenging in driving 

environment

• Wide variation in lighting

• High head rotations

• Occlusion

• We Study a state-of-the-art head pose estimation 

algorithm (HPA) (Baltrusaitis et al. 2013)

• Representative performance with respect to other good 

head pose estimation algorithms
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Performance of Head Pose 

Estimation Algorithm (HPA)

• Analysis performed on all the frames when the subject 

was driving

• Frames detected by the HPA compared to the AprilTag
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HPA
AprilTag

Face 

detected

Face not

detected

Tag 

detected

73.2% 21.51% 94.71%

Tag not 

detected

2.25% 3.03% 5.28%

75.45% 24.54%
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Percentage of Frames Missed by 

the HPA at Different Angles
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Face 

detected

Face not

detected

Tag 

detected

73.2% 21.51% 94.71%

Tag not 

detected

2.25% 3.03% 5.28%

75.45% 24.54%
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Mean Absolute Angle Difference 

between AprilTags and HPA
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Face 

detected

Face not

detected

Tag 

detected

73.2% 21.51% 94.71%

Tag not 

detected

2.25% 3.03% 5.28%

75.45% 24.54%
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Outline

• Data collection

• Performance of head pose estimation

• Gaze estimation using linear regression

• Question 2: How well does the head pose of the 

driver predict his/her gaze (visual attention)?

• Study of eye movement bias

• Conclusion
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Linear Regression Model for 

Gaze Estimation

• Investigate the linear relationship between head pose and 

gaze location

• Model Trained

• 𝑥0 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝛼 + 𝑎5𝛽 + 𝑎6𝛾

• Driver independent partition

• 10 training, 6 testing

Position Orientation
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Linear Regression (Contd.)
• R-squared value

• High correlation in Horizontal direction  But deterministic 

prediction of gaze not possible

• Low R2 values of y Low predictability in pitch direction

• High values in Phase III  No eye movement therefore 

more predictability`
19

Phase 1
(Natural-Parked)

Phase 2
(Natural-Driving)

Phase 3
Controlled*

Train Test Train Test Train Test

x0 0.78 0.77 0.69 0.73 0.91 0.87

y0 0.36 0.12 0.36 0.16 0.66 0.31

z0 0.25 0.10 0.24 0.12 0.31 0.25
* Head Pose ≈ Gaze
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Outline

• Data collection

• Performance of head pose estimation

• Gaze estimation using linear regression

• Study of eye movement bias

• Question 3: How much does the head pose 

varies when the driver is looking at a certain 

direction?

• Conclusion
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Study of Eye Movement Bias
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• Projected the head direction on the windshield

• Ellipse representing the standard deviation of the head pose

• Distance between the ellipse and the gaze point is the average bias 

due to the eye movement

Phase 1 (Parked) Phase 2 (Driving)
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Study of Eye Movement Bias

(cont.)
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Phase 1 (Parked) Phase 2 (Driving)

• Observations

• More variance (hence less predictability) when driving

• More variance when looking away from the front.

• The bias increases as the direction moves away from the frontal pose
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Conclusions
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• How well can we estimate the head pose in a real world 

driving environment?

• At high yaw angles detection rate goes down

• At high pitch angles the difference between the angles goes up

• How well does the head pose of the driver predict his/her 

gaze (visual attention)?

• While there is strong correlation (horizontal direction) a deterministic 

model may not be possible 

• How much does the head pose varies when the driver is 

looking at a certain direction?

• Variation in head pose and the bias due to eye movement 

increases when looking further away from the front.
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Thank you!

Questions?
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