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Abstract— Monitoring driver behavior is crucial in the design
of advanced driver assistance systems (ADAS) that can detect
driver actions, providing necessary warnings when not attentive
to driving tasks. The visual attention of a driver is an impor-
tant aspect to consider, as most driving tasks require visual
resources. Previous work has investigated algorithms to detect
driver visual attention by tracking the head or eye movement.
While tracking pupil can give an accurate direction of visual
attention, estimating gaze on vehicle environment is a challeng-
ing problem due to changes in illumination, head rotations, and
occlusions (e.g. hand, glasses). Instead, this paper investigates
the use of the head pose as a coarse estimate of the driver
visual attention. The key challenge is the non-trivial relation
between head and eye movements while glancing to a target
object, which depends on the driver, the underlying cognitive
and visual demand, and the environment. First, we evaluate the
performance of a state-of-the-art head pose detection algorithm
over natural driving recordings, which are compared with
ground truth estimations derived from AprilTags attached to
a headband. Then, the study proposes regression models to
estimate the drivers’ gaze based on the head position and
orientation, which are built with data from natural driving
recordings. The proposed system achieves high accuracy over
the horizontal direction, but moderate/low performance over
the vertical direction. We compare results while our participants
were driving, and when the vehicle was parked.

I. INTRODUCTION

An effective in-vehicle active safety system has to consider
the driver, the vehicle, and the road environment. This is
a challenging task due to the unpredictable behavior of
drivers who maneuver the vehicle to reach their goals. An
important aspect to understand driver behavior is to estimate
the direction of his/her visual attention, which can signal
cognitive state [1], situational awareness [2] and attention
level [3]. It can also play an important role in in-vehicle
situated dialog systems [4]. In a controlled environment, gaze
can be tracked with high accuracy, especially with affordable
devices recently introduced in the market. However, robust-
ness in naturalistic driving environment is not yet achieved
(varying lighting conditions, uncontrolled head poses and
obstructions due to hand and glasses).

For many applications such as detecting mirror-checking
actions [2], [5], or lane change intentions [6], a coarse esti-
mate of the glance direction is enough to infer his/her visual
attention. For these cases, it is often posited that the driver’s
head pose can provide a coarse estimation of the driver’s
gaze [7]. The relationship between head pose and gaze,
however, depends on multiple factors (e.g., when driving
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versus when the car is stopped, location of visual attention,
cognitive and visual demands of the underlying driving task).
Acknowledging that head pose does not provide the exact
gaze [8], we hypothesize that head pose can provide cues to
predict visual attention of the drivers.

This paper explores models relying on the driver’s head
pose to infer his/her visual attention. How reliable are current
systems to obtain accurate head pose estimates? How reliably
can the head pose be used to estimate coarse gaze location?
What kind of relationship do we observe between head pose
and gaze? We address these questions by analyzing driver’s
natural head poses while looking at pre-defined markers on
the windshield, mirrors, side windows, speedometer panel,
radio, and gear. We compare the position of the target mark-
ers, assumed as the intended gaze direction, with the actual
head pose estimated with an AprilTag-based headband. We
propose linear regression models that are effective to predict
gaze location, especially along the horizontal direction. The
paper also studies the bias introduced by eye movement
during glance actions concluding that the bias increases when
the participants are driving the car. The analysis in this paper
opens interesting research directions to infer driver visual
attention which can serve as a building block for applications
in safety, navigation, and infotainment systems.

II. RELATED WORK

It is particularly important to consider visual attention
while studying driver behavior. Liang and Lee [9] studied
the effect of cognitive and visual distractions, and their
combination, concluding that visual distractions are the most
detrimental type of distraction affecting the primary driving
task. Given the role of visual distraction, several studies have
proposed ADAS systems relying on the driver’s gaze as a cue
for driver behavior [10]–[12]. However, it is challenging to
implement gaze estimation in a real-world scenario, due to
changes in illumination, occlusions, and non-frontal faces.

Head pose is easier to estimate than gaze, however, their
relationship depends on the driving task, visual and cognitive
demands, and the driver. Glances are characterized by com-
bination of pupil and head movements. While acknowledging
that eye gaze is a better indicator, Zhang et al. [7] claimed
that head pose alone can provide good information about
driver’s intentions. Several researchers have used head pose
as a coarse indicator of the driver gaze, avoiding calculating
the exact gaze from the pupils location. Doshi and Trivedi [6]
analyzed the driver’s intent to change lanes using either the
drivers exact gaze or with his/her head pose. The study found
that head pose alone can be more helpful in predicting change
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Fig. 1. Numbered markers placed at the windshield, mirrors, side windows,
speedometer panel, radio, and gear. By asking the drivers to look at the
markers, we establish reference labels for their gaze.

of lanes. A common approach is to classify the driver’s gaze
into predefined zones, using the head pose of the driver
as input [13]–[15]. Murphy and Trivedi [16] proposed to
monitor the driver’s attention using a head tracking system.
Rezaei and Klette [17] attempted to correlate the driver’s
head pose to potential hazards on the road.

The dynamics between head pose and gaze has been of a
subject of interest in human physiology and driving behavior
studies. Zangemeister and Stark [18] analyzed the correlation
between the eye gaze and head movement, defining four
cases: synchronous head and eye movements which occurred
34% of the time, late head movement which occurred 4%
of the time, early head movement which occurred 43% of
the time and early head movement with a late independent
eye saccade which occurred 19% of the time. Robinson
et al. [8] studied the head position of the driver during
lane change and intersections. They studied the relationship
between the eye and head movements in laboratory settings,
concluding that head movement data are sufficient when the
re-fixation angle (i.e., angle between two consecutive fixated
point) is more than 20�. Doshi and Trivedi [19] studied the
correlation between head pose and gaze for stimulus-driven
(i.e., when the gaze shift is due to some external stimuli)
or pre-meditated gaze shift (i.e., when the gaze shift is due
to a planned task). At the fixation point, these two types of
glances produces similar head poses.

This paper analyzes the information about the driver’s gaze
direction that can be obtained from head poses. First, we
evaluate the effectiveness of head pose estimation algorithms
in natural driving conditions. We benchmark the results by
using a headband with multiple AprilTags. Then, we use
regression models where the input is the position and orien-
tation of the drivers’ head, and the output is the predicted
gaze location.

III. DATA COLLECTION
There are clear benefits in studying visual attention of

the driver using data from naturalistic driving conditions, in-
stead of simulators. Recordings in real cars bring challenges
that computer vision algorithms have to solve before these
systems can be deployed into ADAS. This study relies on
recordings using the UTDrive platform, a vehicle preinstalled
with multiple sensors (cameras, microphone array, data from
the controller area network (CAN bus)). Our goal is to
design a solution that can be easily implemented in regular
vehicles. Therefore, we use a commercially available two-
channel dash camera (Blackvue DR650GW-2CH). The front
camera is positioned to capture the road, and is referred to as

Fig. 2. Laser pointer mounted on a glasses’ frame used in phase 3
(controlled head pose).

road camera (30fps, 1920⇥1080 resolution). The rear camera
is positioned to capture the driver’s face, and is referred
to as face camera (30fps, 1280⇥720 resolution). While our
analysis relies on offline processing, the dash camera has
WiFi connection which facilitates real-time implementation.

One of the important challenges while studying the gaze
of drivers is the absence of ground truth labels describing the
true direction in which the driver is looking. We address this
challenge by placing 21 numbered markers at predetermined
locations (Figure 1). Markers 1 to 13 are placed on the
windshield. Markers 14 to 16 are placed on the mirrors.
Markers 17 and 18 are placed on the side windows. The
last three markers are in the speedometer panel (19), radio
(20), and gear (21). We ask the drivers to look at these
predetermined locations following the protocol described
in Section III-A. In total, 16 subjects participated in the
recordings (10 males, 6 females).

A. Protocol
The protocol for data collection has the following three

phases recorded in order.
In phase 1, the vehicle is parked and the subject is

seating in the driving seat. We ask the subject to look at the
markers. A number is randomly generated and read aloud
by the researcher conducting the data collection. We asked
the subjects to look at each marker five times to collect
natural glance behaviors. The aim of this phase is to compare
the glance behavior when the driver does not have any
other competing task requiring cognitive or visual resources.
Furthermore, the subjects get familiar with our core task in
a safe environment.

In phase 2, the driver repeats the procedure while driving
the car. We select a route without many curves or intersec-
tions following the protocol approved by our institutional
review board (IRB). The driver is asked to look at the
markers only when it is safe to take the eye-off-the-road
for short durations. The researcher points the target marker
such that he/she does not have to spend time searching for the
required location. The subject is asked to fixate his/her glance
at the marker and then look back at the road immediately.
The safety of the driver was our first priority. This phase
provide natural glance behaviors while driving. We collect
five repetitions per marker.

In phase 3, the car is parked again and the test is repeated.
This time, the driver is asked to turn his/her head completely
toward the marker, so that the head pose and gaze are aligned
toward the target location. To ensure this requirement, the
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(a) Headband with AprilTags

(b) AprilTag (c) Design of headband

Fig. 3. AprilTag- based headband. (a) headband with 17 AprilTags used
during the data collection, (b) a sample of AprilTag and (c) the design of
the headband.

subjects wore a glasses’ frame with a laser pointer mounted
at the center of the frame (Fig. 2). Their task was to direct the
laser toward the marker. Each marker is requested three times
to collect multiple samples for this controlled recording. The
aim of this phase is to collect reference of ideal head pose
that would point to the marker without any bias due to pupil
movement.

B. Use of AprilTags for Head Pose Estimation

One of the goal in the recordings of this corpus is to assess
the performance of current computer vision algorithms to
track the orientation and position of the head. As analyzed
in Section IV, current algorithms are not able to track
the driver’s face for some frames and, hence, they cannot
provide head pose estimations, especially for cases with
high rotations. The performance is also significantly affected
by variations in illumination, which occurs frequently in
a naturalistic driving scenario. Furthermore, estimating the
position of the face in 3D using a single RGB camera is
challenging. To be able to analyze the head pose regardless
of the head rotation of the driver, we rely on additional
reference markers with the use of AprilTags.

AprilTags [20] are 2D barcodes that are useful in aug-
mented reality, robotic applications, and camera calibration.
These tags contain unique black and white patterns that are
very easy to detect from an image. Figure 3(b) gives an
example. The relative position and orientation of each tag can
be estimated from the size and shape of its projection into the
2D image plane. We designed a solid headband structure with
17 flat areas of 2x2 cm each, which are separated by an angle
of 12�(Fig. 3(c)). We placed a different AprilTag to each of
the 17 sides, where the tag size is 1.6cm x 1.6cm. Figure 3(a)
shows the headband, which was used by the subjects during
the data collection. Even when one of the tags is visible, we
can derive the orientation of the headband, and, therefore,
the head pose of the person wearing the headband.

C. Orientation of the Central Tag
For each frame, we detect the orientation of the central tag

using the orientation of all the detected tags. The headband
contains 17 tags. Given the structure of the headband, a
subset of the tags will be visible by the face camera. Since
the relative orientation of the tags with respect to each other
is fixed, we can determine the orientation of the central
tag with respect to each of the detected tags. The process
involves simple homogenous transformation matrices. First,
we calculate the homogeneous transformation between two
tags adjacent to each other. Let T1 and T2 be 2 adjacent tags
as shown in Figure 3(c). To obtain T2 from T1, the rotation
about the Y axis is 12�and around the X and Z axes is 0�.
The translation from the center of T1 to the center of T2 is:

x = AB +BD = AB +BC cos 12

�
= 1.9781cm

z = CD = BC sin 12

�
= �0.2079cm

Therefore, the overall homogeneous transformation matrix
from T1 to T2 is given by (see Fig. 3(c)).

T1HT2 =

2

664

cos 12

�
0 sin 12

�
1.9781

0 1 0 0

� sin 12

�
0 cos 12

� �0.2079
0 0 0 1

3

775 (1)

Once the relation between adjacent tags is known, the
process can be repeated to calculate the orientation of each
tag from the orientation of another tag. Using this method,
the orientation of the central tag (tag #8) is calculated from
all the detected tags. We observed that few outlier estimations
could skew the result away from the true estimate. To
minimize this problem, we take the median of the calculated
values as the final orientation estimate.

We also calibrate the system to derive the 3D position
of the markers using AprilTags. A key challenge is that
the markers do not appear in the road or face cameras.
Therefore, we place additional AprilTags on the markers and
on certain locations in the vehicle (e.g., driver’s seat). Then,
we use a portable camera to take pictures including subsets
of AprilTags from multiple perspective, from which we learn
their homogeneous transformations. This approach gives the
3D coordinate of each of the markers, which are used for
driver normalization (Sec. III-D) and performance evaluation
(Sec. V-A).

D. Calibration of Tag Orientation to Head Pose
Each subject may have different variations between their

true head orientation and the orientation estimated from the
their headband (e.g., different placements of the headband).
We compensate for these differences as follow. First, we
define the homogeneous transformation between the head
and headband as HeadHtag . Let Ttag be the orientation of
the headband and Thead be the orientation of the head (see
Fig. 4). From Thead, we can obtain the equation of the line
normal to the head’s plane. In the data collected during phase
3, the driver’s head pose is oriented toward the markers, so
the normal vector from the head should cross the location
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Fig. 4. Transformation from headband orientation to head orientation.

of the marker. From the 3D location of the markers (Sec.
III-C) and Ttag obtained from the AprilTag-based headband,
we solve for HeadHtag such that the mean square distance
between the line and the marker location is minimized.

IV. EVALUATING HEAD POSE ESTIMATION

Ideally, an in-vehicle safety system has to rely on non-
intrusive sensors to track the behaviors of the drivers.
Therefore, it is important to have reliable computer vision
algorithms to estimate the position and orientation of the
head. This section compares a state-of-the-art head pose
estimation algorithm (HPA) with the estimation derived from
the headband. We use the head pose estimations from the
headband as baseline, acknowledging that their estimates are
accurate but not perfect. We selected the publicly available
head pose estimation algorithm in Baltrusaitis et al. [21].
We evaluate each frame in the videos, extracting estimations
from the headband and the automatic head orientation algo-
rithm. As illustrated in Figure 4, the orientations of the head
and headband are not exactly the same. For each subject,
we estimate rotation matrices by estimating rotation angles
between them for all the frames, which are then averaged.

In 73.2% of the frames, we obtain estimates from both
AprilTag-based headband and head pose estimation algo-
rithm. In 5.3% of the frames, the AprilTag-based headband
was not able to provide an estimate. In 24.5% of the frames,
the HPA was not able to provide an estimate. In 21.51%
of the frames, only the AprilTag-based headband gave an
estimate, while in 2.3% of the frames, only the HPA provided
an estimate. Few frames were not detected by the AprilTag-
based headband because of blurred images due to motion,
while the face could be tracked. For some frames (3%), we
do not have either of the estimates, because of very high or
low exposure to light or the driver’s face was completely out
of the frame (e.g., looking back).

We consider the data for which AprilTags were detected
but the HPA did not detect the face. The major reason for
missed those frames is when the driver turned away from
the frontal position. Figure 5 shows the percentage of frames
missed by the HPA at different angles of rotation for ↵ (roll),
� (yaw) and � (pitch) directions (solid line). The histograms
show the number of frames detected by AprilTag in each bin,
for different angles (gray bars). Figure 5 shows that most
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(c) angle � (Pitch)
Fig. 5. Percentage of the frames missed by the head pose estimation
algorithm (HPA) as a function of the angles (solid line). The figure also
shows the histogram of the head pose angles estimated with the AprilTag-
based headband.

head orientations are between -10�and 10�, for roll and yaw.
For pitch, the distribution is skewed to the right (-10�and
20�). Less frames are missed by the HPA when the angles
are close to zero – i.e. when the face is frontal. When the
magnitude of the head orientation is larger than 20�, more
frames are missed by the HPA. The encouraging result is
that there are few frames under this condition (see Fig. 5).

We also compare the differences in the estimation as a
function of the angle. For this analysis we consider the
frames where both methods provided an estimate (73.2% of
the frames). Figure 6 plots the mean absolute differences
between the estimates (solid line). The figure also plots the
histogram with the distribution of different angles estimated
by the AprilTag-based headband. The estimates of both
approaches are similar for frontal or semi frontal faces (i.e.,
yaw between -40�and 40�, pitch between -20�and 20�). Yaw
is one of the most important angle for in-vehicle applications
(horizontal glance patterns). For yaw, the differences are less
than 5�when the angles are between -20�and 30�. For angles
with higher magnitude, there are fewer frames provided by
the HPA so the average results are less reliable.

V. PREDICTION OF DRIVER’S GAZE

A. Regression Model to Estimate Gaze

We explore linear regression to study the dependency
between the orientation and position of the head and gaze.
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(c) Angle � (Pitch)
Fig. 6. Absolute differences between the estimates from the head pose
estimation algorithm (HPA) and the AprilTag-based headband (solid line).
The figure shows the histogram of the head pose angles estimated with
headband (bars).

Given the challenges in detecting head pose using automatic
algorithms (Sec. IV), this analysis relies on the estimates
provided by the AprilTag-based headband. The independent
variables correspond to the head position (x,y,z) and head
orientation (↵ – roll, � – yaw, � – pitch). The dependent
variable are the gaze location characterized by the 3D
position of the target marker (x0,y0,z0), using the method
described in Section III-C. Equation 1 gives the proposed
model for x0. Similar models are used for y0 and z0.

x0 = a0 + a1x+ a2y + a3z + a4↵+ a5� + a6� (1)

The regression models are separately trained and tested
with data from the three phases. The evaluation considers
driver independent partitions for building and evaluating the
models. The training set includes data from ten drivers, and
the testing set includes data from the remaining six drivers.
The drivers were randomly selected in these partitions.

Table I lists the R2 values observed on the train and
test partitions for the three phases. The R2 represents the
amount of variability in the dependent variable that the model
account for. The table gives the R2 values on the train and
test partitions, where their small difference indicates that the
regression models have good generalization. Across phases,
we observe that the predictability in the Y (vertical axis)
and Z (depth axis) directions are significantly lower than the
predictability in the X (horizontal axis) direction. Most in-
vehicle applications require good resolution on the horizontal

TABLE I
REGRESSION MODELS TO ESTIMATE GAZE FROM HEAD ORIENTATION

AND POSITION. THE RESULTS ARE PROVIDED FOR PHASE 1 (NATURAL

HEAD POSE WHEN CAR IS PARKED), PHASE 2 (NATURAL HEAD POSE

WHILE DRIVING), AND PHASE 3 (CONTROLLED HEAD POSE).

Phase Gaze
R2 constant position rotation

Train Test a0 a1 a2 a3 a4 a5 a6

Ph
as

e
1

x0 0.78 0.77 -0.11 -1.04 -1.14 -0.51 -0.05 -1.09 0.12
y0 0.36 0.12 0.01 2.15 1.88 0.59 0.00 0.12 -0.10
z0 0.25 0.10 0.33 -3.32 -2.25 0.09 -0.19 -0.57 -0.46

Ph
as

e
2

x0 0.69 0.73 -0.30 -1.07 -2.26 -1.17 -0.20 -1.24 0.01
y0 0.36 0.16 -0.24 3.16 2.27 0.35 0.19 0.22 0.01
z0 0.24 0.12 0.37 -4.50 -1.09 0.28 -0.47 -0.78 -0.30

Ph
as

e
3

x0 0.91 0.87 0.16 0.45 -1.65 0.16 -0.01 -0.70 -0.01
y0 0.66 0.31 -0.19 1.35 2.08 0.20 -0.01 0.02 -0.08
z0 0.31 0.25 0.65 -2.00 1.29 1.68 -0.05 -0.22 -0.05

Coefficients in bold are statistically significant at p-value<0.05.

direction (e.g., lane change, turns, mirror checking actions).
Therefore, it is encouraging that the R2 over the test partition
is 0.65 for natural glance behaviors while driving (phase 2).
The best performance of the regression models is for phase
3 (controlled recordings where head pose is directed toward
the target marker). The R2 values drop for phase 1 and phase
2, where the drivers complete the task with natural glance
behaviors. The worst performance of the regression models
is in phase 2.

Table I also lists the coefficients of the regression models.
If we assert significance at p-value<0.05, most of the in-
dependent variable are useful to estimate the gaze location.
Table I highlights in bold these coefficients. We notice that
a5 (�, yaw) is important for estimating x0. The independent
variables for the head’s position (i.e., a1-a3) are important
to estimate the target gaze location.

B. Bias Introduced by Eye Movement
The final analysis explores the bias introduced by eye

movement while glancing at the target marker. We project
the head direction vectors into the windshield by using the
homogeneous transformation between the head and headband
(HeadHtag) estimated in Section III-D. For each marker,
we estimate an ellipse centered at the mean of the head
pose projections, with radius given by the standard deviation.
This analysis identifies the head pose direction used by the
drivers to look at the marker. The difference between the
head pose direction and the marker position is due to the eye
movement, which this analysis refers to as bias. This bias is
illustrated by a solid line from the center of an ellipse and
the corresponding marker position.

Figure 7 shows that the bias is low for markers in front
of the drivers, and increases for markers further from the
drivers. When the angle increases, the variability of the
head pose for each gaze location also increases (e.g., bigger
ellipses), as the driver depends more on eye movement rather
than head rotation. The figure shows interesting differences
between phase 1 (when the car is parked, Fig 7(a)) and 2
(when the subject is driving, Fig. 7(b)). First, the size of
the ellipses are bigger when the subject is driving indicat-
ing higher variability. We hypothesize that different driving
conditions affect the manner in which the driver glances
at the target marker. Another interesting observation is that
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(a) Natural head pose distribution when car is parked

(b) Natural head pose distribution when driving
Fig. 7. Distribution of head pose directions projected into the windshield.
Each ellipse characterizes a target marker, where its center corresponds
to the mean of the head pose direction and it size represents its standard
deviation. The solid line connecting the marker to the center of its ellipse
is the mean bias introduced by eye movement during eye glance actions.

the average bias (solid lines) is higher, indicating that the
center of the ellipses on the right side of the windshield
are shifted to the left. The primary driving task increases
the cognitive/visual demand, so drivers complete the glance
action by moving the eye limiting the head rotation.

VI. CONCLUSIONS
The paper analyzed the relationship between head pose

and gaze, in naturalistic driving environment. It presented
a carefully designed corpus where glance behaviors are
analyzed while driving and when the car is parked. The
paper evaluated the performance of a state-of-the-art head
pose estimation algorithm showing that 24.5% of the frames
are not correctly processed, suggesting open challenges in
creating computer vision algorithms that are robust in ve-
hicle environment. The paper also demonstrated that linear
regression models are effective to estimate the gaze location,
having reasonable performance along the horizontal direc-
tion. Finally, the paper analyzed the bias introduced by eye
movement during glance actions, which increases when the
participants are driving. The strong correlation between head
pose and the gaze direction can be utilized to estimate the
visual attention of the driver with varying level of confidence
depending on the situation.

Most of the analysis relied on estimates derived from
the AprilTag-based headband. It is important to develop
robust solution based on non-intrusive sensors to estimate
the orientation and position of the driver’s head. Various
techniques can be investigated, including using multiple
cameras [13], infrared sensors, or time-of-flight cameras.
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