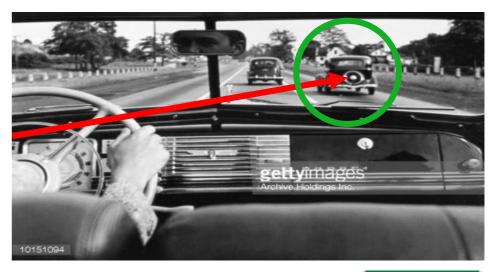


Probabilistic Estimation of the Driver's Gaze from Head Orientation and Position


Sumit Jha and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory

Department of Electrical Engineering,

The University of Texas at Dallas,

Richardson TX-75080, USA

Drivers' Visual Attention

- Primary driving related task
 - Mirror checking actions [Li and Busso, 2016]
 - Lane change
 - Turns and cross sections
- Secondary tasks
 - Mobile phones and in-vehicle entertainment unit
 - Co-passengers in the car
 - Billboards and other distractions from the environment

Nanxiang Li and Carlos Busso, "Detecting drivers' mirror-checking actions and its application to maneuver and secondary task recognition," IEEE Transactions on Intelligent Transportation Systems 17 (4), 980-992.

Motivations

- Gaze detection challenging in car environment
- It is often approximated by head pose
- While head pose is strongly correlated with gaze, a one-to-one relation does not exist [Jha and Busso, 2016]

Left mirror

Right mirror

Rear mirror

 Goal of this study is to provide a probabilistic prediction of driver's visual attention from head pose

S. Jha and C. Busso. Analyzing the relationship between head pose and gaze to model driver visual attention. In *International Conference on Intelligent Transportation Systems (ITSC 2016)*, pages 2157–2162, Rio de Janeiro, Brazil, November 2016.

Objective

- Head pose Gaze relation non-deterministic, depends on
 - Location of gaze
 - Driver
- Use probabilistic model that can provide a distribution of confidence

Visual Attention Estimation

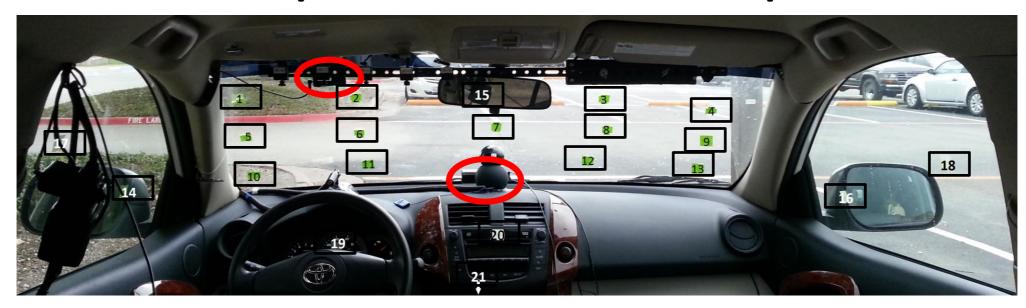
Outline

- Dataset
- Gaussian Process Regression (GPR) model
- Experimental Evaluation
- Conclusions

Data Collection

- Relate the head pose to ground truth gaze locations
- UTDrive platform

- Dash Cameras used instead of the on-board equipment
 - Blackvue dr650gw 2 channel

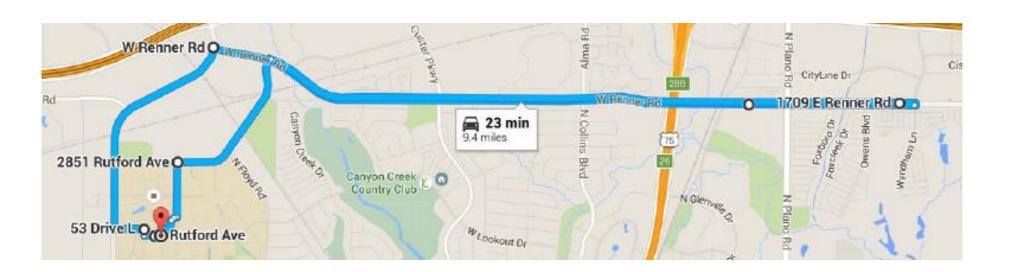


Experimental Setup

- Rear camera Face
- Front camera → Road
- Markers placed at
 - windshield (no. 1-13)
 - mirrors(no. 14-16)
 - side windows (no. 17-18)
 - speedometer panel (19), radio (20), and gear (21)
- Data collected with 16 subjects (10 males, 6 females)

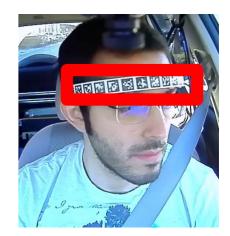
Phase 1 (Natural Gaze – Parked Vehicle)

- Collected in a parked car
- Subject asked to look at each point five times in a random order (21x5 = 105 data per subject)
- Natural variability in head pose without the constraint of driving task
- The driver familiarizes to the core task



Phase 2 (Natural Gaze - Driving)

- Collected when the subject is driving the car
- Subject asked to look at points
- Data collected in a straight road with minimum maneuvering task


AprilTags for Head Pose Estimation

- Head pose estimation challenging in driving environment
- AprilTags [Olson, 2011]

- Headband designed with 17 AprilTags
- Useful for robust detection of head pose across conditions

Olson, Edwin. "AprilTag: A robust and flexible visual fiducial system." *Robotics and Automation (ICRA), 2011 IEEE International Conference on*. IEEE, 2011.

Outline

- Dataset
- Gaussian Process Regression (GPR) model
- Experimental Evaluation
- Conclusions

Linear Regression Model for Gaze Estimation

- linear relationship between Head Pose and Gaze location Position
 Orientation
 - $x_0 = a_0 + a_1 x + a_2 y + a_3 z + a_4 \alpha + a_5 \beta + a_6 \gamma$
- R-squared value

	Phase 1		Phase 2	
	(Parked)		(Driving)	
	Train	Test	Train	Test
x_0	0.78	0.77	0.69	0.73
y_0	0.36	0.12	0.36	0.16
z_0	0.25	0.10	0.24	0.12

 High correlation but not enough for a practical gaze prediction from head pose

Gaussian Process Regression

- Get a confidence region instead of a deterministic output
- Output assumed to be a Gaussian Process generated from the input variables

$$Y = h(\vec{x})^T \beta + f(\vec{x})$$

Deterministic Probabilistic component component

$$f(\vec{x}) \sim GP(0, K(\vec{x}, \vec{x}'))$$

$$K(\vec{x_1}, \vec{x_2}) = \sigma_f^2 \exp\left(\frac{-|\vec{x_1} - \vec{x_2}|^2}{2l^2}\right)$$

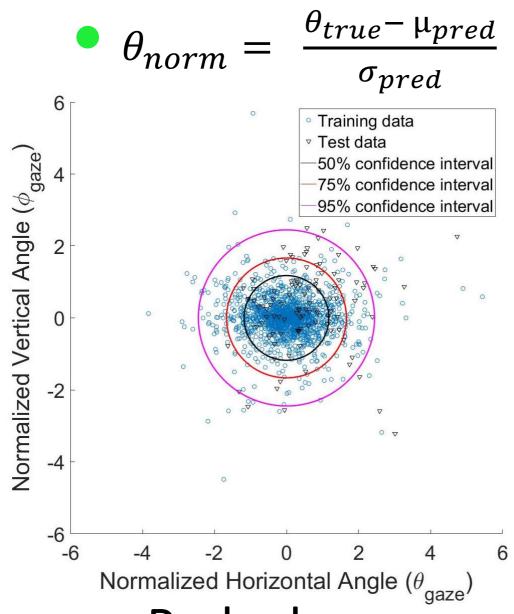
The value of the cross covariance is high for close points

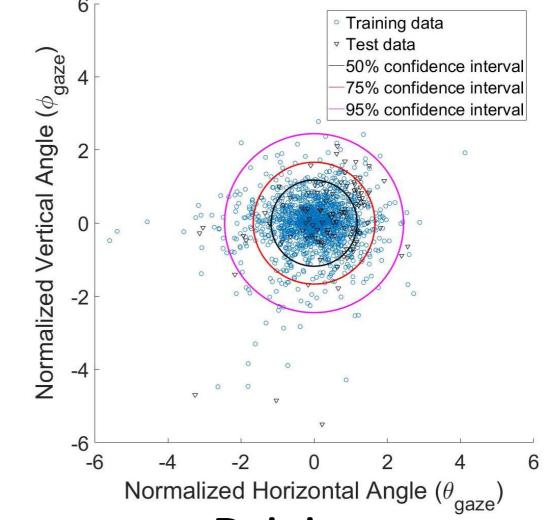
GPR Implementation

- Used GPR to model the gaze direction from the head pose
- Inputs → Head position (x,y,z) and angles (α (Yaw), β (Pitch) and γ (roll))
- Output $\rightarrow \alpha_{gaze}$ and β_{gaze} (angle of the vector between the head and the gaze location)
- Leave one out cross-validation (LOOCV) train with 15 subjects and test with the 16th

Outline

- Dataset
- Gaussian Process Regression (GPR) model
- Experimental Evaluation
- Conclusions



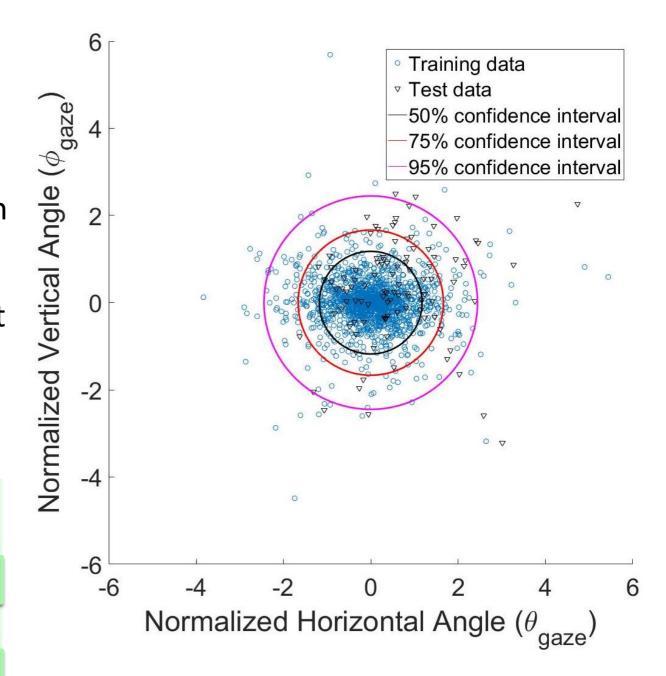


GPR Performance

 Normalized distance of the true gaze location from the predicted distribution

Driving

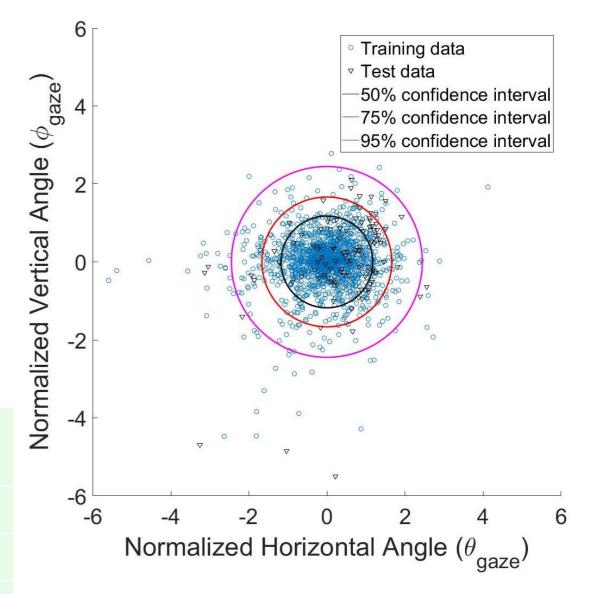
UT D



GPR Performance Phase 1 (Parked Car)

- Observations
 - 60% data is concentrated within50% CI
 - 95% CI includes 90% gaze target

Gaussian Confidence		
Interval	Training Data	Test Data
50% region	77.77%	61.34%
75% region	89.45%	78.44%
95% region	96.51%	90.35%

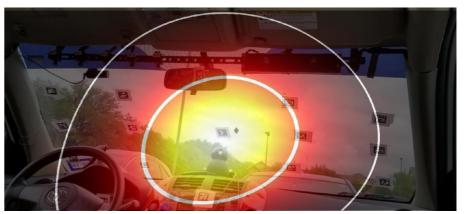


GPR Performance Phase 2 (Driving)

- Observations
 - Slightly lower performance and generalization
 - 95% CI includes 89% gaze target

Gaussian Confidence Interval	Training Data	Test Data
50% region	74.5%	56.3%
75% region	88.5%	76.6%
95% region	96.8%	89.4%

U T D CRSS


Mapping Region of Gaze on the Windshield

- Project the predicted confidence interval of gaze on the windshield
- Compare with the ground truth
- Small area shows high confidence in prediction of visual attention
- Larger area more accurate but low confidence

Mapping Region of Gaze on the Windshield

Mapping the Distribution to Road

- Distribution obtained at different depth value from the distribution of α and β angles
- PDF values for the 3D coordinates summed up for depth values for each Pixel

Region of Gaze on the Road

Conclusions and future work

- Probabilistic approach to gaze from head pose
- Confidence region instead of deterministic regression gives more intuitive results
- Future Works
 - Relate with ground truth on the roads
 - Road signs
 - Other cars
 - Study different types of gaze shifts
 - Exogeneous shifts based on external stimuli
 - Endogenous shifts based on driver's intention

Prospective Applications

Warning: Pedestrians on the Road Driver Unaware!!

Info: House no xxxx located Arrive at destination

Thank you!

Questions?

Warning: Pedestrians on the Road Driver Unaware!!

Info: House no xxxx located Arrive at destination

msp.utdallas.edu

