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Abstract—Visual attention is an important factor when study-
ing driver behavior. While the location of the pupil can provide
accurate information about gaze, the vehicle environment poses
challenges that prevent the use of off-the-shelf gaze detection
algorithms in the car. Head pose can be used to approximate the
driver’s visual attention, providing a coarse estimate which can
be good enough for many applications. However, the relation
between head pose and gaze is not one-to-one, depending on
the driver, cognitive load, and visual task. Instead of detecting
a precise gaze direction, this paper proposes a novel approach
which creates a probabilistic map describing visual attention.
The approach relies on Gaussian process regression (GPR), which
takes the position and orientation of the drivers’ head to estimate
the probability that the driver is looking at a given point.
The approach creates confidence regions describing the most
likely gaze directions. We evaluate the proposed approach with
naturalistic recordings in real roads, where we estimate the
position and orientation of the driver’s head using a headband
with fiducial markers. The experimental evaluation demonstrates
that 89.4% of drivers’ gaze are included in the 95% confidence
region predicted by our model. The proposed system can provide
valuable information for navigation, infotainment, safety and
communication systems.

I. INTRODUCTION

The safety of a vehicle is a major concern for the automobile
industry, where lives can be saved by developing new tools for
advanced driver assistance systems (ADAS). At the core of
safety is the driver. According to the survey conducted by
the National Highway Traffic Safety Administration (NHTSA)
[24], the reason responsible for 94% of the total crashes in
The United States was human error. Therefore, it is important
to track the behaviors of the driver, detecting lack of attention
and lack of situational awareness. This safety capability is
even more relevant as we transition to autonomous vehicles,
especially during Level 2 and Level 3 of autonomous vehicles
[19], where the driver and vehicle share the control of the car.

It is important to consider the visual attention of the
drivers to monitor their awareness. Driving primary relies
on visual resources to maneuver the vehicle. Therefore, it is
important to assess where the visual attention of the driver
is directed. The knowledge of the driver’s visual attention
can help the system to infer situational awareness [17], the
driver’s cognitive state [16], and visual distractions [14], [18].
While there are various gaze detection solutions for controlled
settings [3], [15], detecting gaze in the car is a challenging
problem due to illumination changes, occlusions and extreme
head rotations. A simplified solution is to rely on head pose

to predict the driver’s visual attention. Detecting head pose in
driving environment is still a challenge [10], however, it is a
more feasible computer vision task. A coarse solution for gaze
detection based on head pose estimation is enough in most
in-vehicle applications (e.g., mirror checking [17] and lane
changing [6]). Most relevant studies in the field have used gaze
zone classification to predict pre-defined regions of gaze in
the driving environment [5], [13], [25]. However, the mapping
between head pose and gaze is many-to-many, depending on
the driver, his/her cognitive load, and the underlying visual
task [9]. It is important to develop better solutions to estimate
the visual attention of the driver from his/her head poses.

This paper proposes a novel approach to predict the gaze
region. Instead of attempting to predict the exact position that
the driver fixates his/her attention, we redefine the problem
as a probabilistic mapping, where the task is to create a
saliency map to characterize visual attention. The approach
relies on Gaussian process regression (GPR), which takes as
input the position and rotation of the driver’s head, predicting
the probability that the driver is looking at any given point.
The probabilistic estimation of the driven’s gaze provides
confidence regions describing visual attention, which can be
valuable information for navigation, infotainment, safety and
communication systems.

We evaluate the approach with recordings collected with
the UTDrive platform [1], where drivers were asked to look
at predefined markers in the windshield. We obtain precise
estimations of the position and rotation of the driver’s head
with a headband containing fiducial markers. The experimental
evaluation shows that the driver’s gaze lie 89.4% within the
95% confidence region predicted by our model.

II. RELATED WORK

A driver obtains the majority of the information to perform
the driving task through visual cues. Hence, it is important to
know where the driver is looking at to evaluate the perfor-
mance of the driver, predict what is he/she going to do next,
and understand ambiguous commands. Many studies have used
the visual pattern of the driver to understand their behaviors.
Robinson et al. [23] studied the visual search pattern of drivers
in different sections of the road. Their study demonstrated that
glance patterns strongly depend on the driving tasks, showing
longer searching times at stop signs, and shorter searching
times for maneuvers such as changing lanes. Underwood and
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(a) UTDrive platform (b) Layout of Markers
Fig. 1. (a) Vehicle used for data collection, and (b) markers placed at the windshield (1-13), mirrors (14-16), side windows (17-18), speedometer panel (19),
radio (20), and gear (21). The subjects were asked to look at these markers.

Crundall [26] compared the visual search pattern in novice and
experienced driver, showing that experienced drivers display
different visual search patterns depending on the type of road.
In contrast, novice drivers presented similar pattern across
types of road. These studies showed that visual attention
depends on the driving task and the driver’s expertise.

Previous studies have proposed different ADAS that incor-
porates the driver’s gaze as a cue to study inattentive drivers.
Fletcher and Zelinsky [8] predicted inattention by studying
the relationship between road signs and driver’s gaze, which
was estimated with the commercial software faceLABTM.
This study considered recording in real driving conditions.
Chien et al. [4] proposed an AdaBoost classifier to track the
driver’s eyes and estimate the gaze. The face orientation was
obtained from the location of the eyes and nose and was
adjusted using the pupil location. Using the orientation, the
horizontal gaze angle was detected between -⇡/4 and +⇡/4
with +⇡/16 resolution. Ji and Yang [11] proposed the use
of IR sensors to predict the driver’s gaze, but the evaluation
considered simulations. It is not clear how the algorithms will
work in real-world driving scenarios, where occlusions (e.g.,
use of glasses, hands), non-frontal faces, and variant lighting
conditions challenge the robust estimation of gaze.

A coarse estimation of the driver’s visual attention is often
sufficient for various practical scenarios. The driver’s head
pose can be helpful for this purpose, which is significantly
easier to estimate. Zhang et al. [27] suggested that head pose
alone can provide good information about driver’s intentions
as compared to the eye movement. Several studies have used
different head pose estimation systems to classify the driver’s
gaze into several predetermined areas [5], [13], [25]. Rezaei
and Klette [22] used the head pose of the driver as a feature to
estimate the driver’s attention. Doshi and Trivedi [6] studied
the driver’s head pose and eye movement behavior before
changing lanes concluding that head pose is a good feature to
predict the driver’s intention to change lanes. They followed
up this study by considering the causes that triggered gaze
shifts, focusing on planned actions (e.g., glances before and
after conducting driving tasks), and stimulus-driven actions
(external objects such as other vehicles and pedestrians) [7].
For gaze fixation, head pose and gaze were highly correlated
for both scenarios.

Instead of estimating the precise location of the drivers’ gaze

(a) Dash camera

(b) Driver’s camera (c) Car’s camera
Fig. 2. Data collection. (a) Dash camera (Blackvue) used for data collection,
(b) frame from the driver’s camera, (c) frame from the road’s camera.

using head pose, which depends on the driver, the task, and the
cognitive load of the drivers, we propose to create a probabilis-
tic visual map defining regions of confidence characterizing
where the driver may be looking at. This concept is intuitive,
and novel, offering contextual information that is relevant for
a number of in-vehicle applications for security, infotainment
and navigation. To the best knowledge of the authors, this is
the first study that models the relationship between gaze and
head motion using a probabilistic visual map.

III. DATA COLLECTION

The study relies on the database discussed in Jha and Busso
[9]. This data was collected using the UT Drive platform
(Fig. 1(a)), where the task for the drivers was to look at
21 predefined locations marked on the windshield, mirrors,
side windows, speedometer panel, radio, and gear (Fig. 1(b)).
These numbered markers are called at random, and the driver
is asked to fixate their gaze on the target point. The road and
the drivers are simultaneously recorded using a commercially
available two-channel dash camera (Blackvue DR-650GW-2ch
- Fig. 2(a)). The data collection has three phases. This study
uses the first two phases, which are described below.

In Phase 1, the evaluation is conducted while the car is
parked. The subject is asked to take the driver’s seat and look
at each marker five times in random order. This phase helps
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(a) AprilTag (b) Headband with AprilTags
Fig. 3. (a) Sample of AprilTags, (b) Headband with AprilTags for robust
head pose estimation.

the driver to get familiar with the task in a safe environment.
The driver looked at the markers by moving their eyes and
head in a natural manner.

In Phase 2, the subject is asked to repeat the evaluation
while driving the car. The subject is asked again to look at
each marker five times in random order. We selected a straight
road, which minimized the risk in the evaluation. The driver
was asked to look at the markers only when it was safe to
conduct this task.

We recruited 16 subjects (10 males, 6 females) for the data
collection. Figures 2(b) and 2(c) show examples of frames for
the cameras facing the driver and road.

IV. HEAD POSE ESTIMATION USING APRILTAGS

The proposed approach uses the position and rotation of
the driver’s head as input. Ideally, this information can be
automatically derived from the camera using computer vision
solutions. We have studied head pose estimation algorithms
in driving environment [10]. Our analysis demonstrated the
complexity of the task due to illumination, extreme head poses
and occlusions. State-of-the-art algorithms cannot detect the
driver’s face in over 20% of the frames in our corpus. While
we expect that better head pose estimation algorithms will
improve the robustness for in-vehicle applications, the current
study requires more accurate estimates. Therefore, we rely on
a headband with AprilTags [20] to estimate the head position
and orientation. AprilTags (Fig. 3(a)) are fiducial markers that
can be robustly detected in an image. It is possible to estimate
their position and orientation from 2D images, since their
patterns and sizes are known. AprilTags are used in camera
calibration, augmented reality and applications with robots.

We designed a headband with 17 different AprilTags as
illustrated in the structure shown in Figure 3(b). The subject
wore the headband during the data collection. The design of
the headband allows the camera to capture AprilTags even for
extreme head motion, from which we estimate the position and
orientation of the headband. We translate the angles estimated
across AprilTags to the central AprilTag, defining a reference
for the head position and orientation. We select the median
value of the angles provided by AprilTags as the estimate of
the head orientation.

V. METHODOLOGY

This paper aims to create a probabilistic map describing the
driver’s visual attention. The approach requires to calibrate the
3D location of the markers relative to the reference coordinate

(a) face camera (b) calibration camera, view 1

(c) calibration camera, view 2 (d) calibration camera, view 3
Fig. 4. Coordinate calibration: Calibration for marker location with the face
camera

system. Section V-A discusses the calibration approach used
to obtain the 3D location of target markers. The system also
requires to normalize the angle to generalize the models across
drivers. This normalization seeks to create a driver independent
system that maintains performance when evaluated on a new
driver, whose recordings were not included during training.
Section V-B discusses the speaker-dependent normalization
of the the recordings. Section V-C presents the proposed
technique to predict the probabilistic map based on Gaussian
Process Regression (GPR).

A. Calibration of the Target Markers

The method requires estimating the 3D location of the target
markers in the windshield, mirrors, side windows, speedometer
panel, radio, and gear. This calibration process is done only
one time, since the location of the cameras and the markers are
fixed during the data collection. We conduct this calibration
using AprilTags, by placing a unique AprilTag on each marker
(see Fig. 4(d)). A challenge in this process is that most of these
AprilTags are visible by neither of the dash-cameras (cameras
facing the road and driver). We addressed this problem by
adding extra AprilTags at different locations in the visual range
of the camera facing the drivers (Fig. 4(a)). The goal is to find
the homogeneous transformations between AprilTags, which
will allow us to place all the angles in a single coordinate
system. After placing extra AprilTags, we took pictures from
multiple angles using a portable camera Figures 4(b), 4(c)
and 4(d) are examples of these pictures. We also take frames
using the camera facing the driver (Fig. 4(a)). Then, we detect
the location and angular direction of each AprilTag that is
visible in each figure. We determine the relative orientation
between two images using the set of AprilTags visible on
both images using the Kabsch algorithm [12]. The result of
this calibration is the 3D locations of all the markers in the
reference coordinate system of the camera facing the driver.

B. Head Position and Orientation Normalization

Drivers have different heights and they have different seat-
ing preferences. There are also differences in the placements
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of the headband across drivers. Therefore, it is important to
normalize the 6D head estimates so the models generalize
to new drivers. To compensate for these variabilities, we
normalize for each driver the angles and positions provided by
the AprilTags. For phase 1, we estimate the mean and standard
deviation of the head pose estimation while the subject was
conducting task associated with this phase. For phase 2, we
calculate the mean and standard deviation of the head pose
estimation during the time that a subject was driving. This
normalization is conducted for each of the 6D parameters
using Equation 1.

x

norm

=

x

obs

� µ

�

(1)

This approach provides an implicit calibration technique to
normalize the data and generalize the models to new drivers for
which the system is not trained. In Section V-A, we obtained
the 3D location of the markers with respect to the reference
system of the camera facing the driver. With the normalization
performed on the head pose, the reference axes also change.
Therefore, we apply the same mapping operation to the 3D
location of the target markers to maintain consistency.

C. Estimation of Probabilistic Visual Map
The relation between head pose and gaze while driving is

not one-to-one [9]. The drivers move their eye and head to
direct his gaze to the target location. The visual and cognitive
load at that moments will dictate the interplay between head
and eye movement. As a result, we propose to estimate a
visual map that indicate the probability that a driver is looking
at a given point. This approach is different from traditional
methods that aim to detect the precise gaze of the drivers.
We argue that having a probability map for the gaze is more
flexible and robust.

The framework for the proposed model is Gaussian Process
Regression (GPR) [21]. GPR is a probabilistic method that
aims to predict the output, which is considered a Gaussian
process. Any finite subset in the output space forms a joint
Gaussian distribution. The key difference of this framework,
compared to other regression models, is that the goal is not
to predict a single value, but to predict the probability of the
output. To design our model, we obtain a unit vector in the
direction between the head and the location of the target gaze.
The vector is represented by the horizontal angle ✓ and the
vertical angle �. We train two separate GPR models to predict
these angles

The model predicts a Gaussian distribution for the hori-
zontal (✓) and vertical (�) angles describing visual attention
of the driver. The distributions are parametrized by the mean
and standard deviation of these angles. The mean is obtained
from a linear basis function using the 6D head parameters
(~x = [x, y, z,↵,�, �]). The covariance function between
two vectors is obtained using the squared exponential kernel
function:

K( ~x1, ~x2) = �

2
f exp

✓
�| ~x1 � ~x2|2

2l

2

◆
(2)

where, l and �

2
f are parameters determined during training

process. The probabilistic region provide a coarse estimate of
the head pose, where the coarseness depends on the confidence
that we have for a given head pose. For example, if we are
more confident in the estimation of the gaze for a given head
pose, the model will provide a small confidence region for the
gaze.

VI. EXPERIMENTAL EVALUATION

The evaluation relies on driver dependent partitions for
training and testing using leave-one-out cross-validation
(LOOCV). In each fold, we use 15 subjects to train the system,
evaluating the results on data collected from the remaining
driver. Therefore, the testing set has recordings from a driver
whose data was not included in the training set, which help us
to study the generalization of the proposed model. The results
correspond to the average values observed across the 16 folds.

We evaluate the approach with the instances where the
drivers were asked to look at the target markers, for which
we have ground truths for the intended gaze direction. We
separately analyze the results for phase 1 (i.e., data collection
when the car was parked) and phase 2 (i.e., data collection
when the car was moving) of the corpus, training and testing
the models in matched conditions.

A. Predicting Location of Target Markers
The first evaluation consists of predicting the location of

target markers. For each head pose, we estimate the confidence
regions using the probabilistic model for ✓ and �. We evaluate
the 50%, 75% and 95% confidence intervals. Notice that the
50% confidence interval is a subset of the 95% confidence
interval, which covers a larger region. The size of these regions
depend on the certainty of the model which is a function of
the position and rotation of the head (see Fig. 6). Then, we
estimate the proportion of target gazes included in a given
confidence interval.

Table I gives the average percentage of samples included in
the 50%, 75% and 95% confidence regions of the Gaussian
distribution. We include the results from the training set, and
from the testing set to study the generalization of the models.
We observe that when the subject is driving (phase 2), 89.43%
of the true gazes from the test samples are included in the 95%
region of the distribution predicted by the model. Even for
more restrictive confidence intervals, the approach is able to
include the majority of the intended gaze directions from the
test set. The values for samples in the training set are higher
than the one for the testing set, which suggest that the models
can be improved. We expect that increasing the number of
drivers in the training set will produce more robust models.

We also study the detection performance for markers in
different regions. For this purpose, we divided the markers
into three groups. The left windshield group includes all the
point near the frontal gaze region (i.e., markers 1, 2, 5, 6,
10, and 11 in Fig. 1(b)), the right windshield group includes
all the markers in the windshield to the right of the driver
(i.e., markers 3, 4, 7, 8, 9, 12, and 13 in Fig. 1(b)), and
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TABLE I
GAZE ESTIMATION RESULTS FOR PHASE 1 AND 2 OVER THE TRAIN AND TEST SAMPLES. THE RESULTS ARE LISTED FOR EACH confidence interval (CI).

C All Markers Left Windshield Right Windshield Outside Windshield
Training Data Test Data Training Data Test Data Training Data Test Data Training Data Test Data

Phase 1 (while parked)
50% CI 77.77% 61.34% 92.20% 83.80% 66.98% 51.32% 76.38% 53.22%
75% CI 89.45% 78.44% 97.78% 94.81% 84.18% 73.96% 87.80% 70.03%
95% CI 96.51% 90.35% 99.17% 98.34% 95.29% 91.25% 95.59% 83.51%

Phase 2 (while driving)
50% CI 74.52% 56.32% 80.87% 69.44% 74.64% 56.19% 69.59% 46.52%
75% CI 88.54% 76.55% 94.82% 89.93% 89.32% 79.83% 83.09% 63.46%
95% CI 96.88% 89.43% 99.75% 97.89% 98.09% 91.96% 93.62% 80.67%
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(b) when driving - phase 2

Fig. 5. Normalized distance between the intended gaze angles and the
mean value estimated by the GPR model. The circles correspond to different
confidence regions.

the outside windshield group includes all the markers in mir-
rors, side windows, speedometer panel, radio, and gear (i.e.,
markers 14 – 21 in Fig. 1(b)). We evaluate the performance
of the model in these regions, listing the results in Table I.
The model has the best performance for markers in the left
windshield group. The worst performance in terms of accuracy
and generalization is for markers outside the windshield. The
system is very accurate for regions in front of the drivers,
but its performance drops for markers further from the drivers
where the relationship between gaze and head pose is more
ambiguous.

The performance for phase 1 (while parked) is in general
better than the one for phase 2 (while driving). The 95%
confidence region contained 90.35% of the intended gazes
from the test data. Notice that detecting visual attention while
driving (phase 2) may be more important than when the car is
stopped (phase 1), so our future effort will focus on increasing
the performance for phase 2.

To visualize the results, we calculate the distance between
the mean of the predicted distribution and the intended target
angle for each sample using Equation 3. We can visualize
samples for all the markers in a single figure after subtracting
the mean and dividing by the standard deviation. Figure 5
shows the confidence intervals and the samples from the
training and testing sets for one of the 16 folds. The figure
shows that most of the points are included in the confidence
intervals.

dist(y,model) =

y

true

� µ

model

�

model

(3)

(a) Face camera (b) Mapping on windshield, phase 2

(c) face camera (d) Mapping on windshield, phase 2

(e) face camera (f) Mapping on windshield, phase 2

Fig. 6. Example of mapping the gaze region on the windshield (white ellipses
give 50% and 95% CIs). The target marker is highlighted with a black circle.

B. Mapping the Gaze Angles to the Windshield

The probability map can be easily mapped into the wind-
shield. The proposed models estimate the probabilistic map
for the angles ✓ and �. There is not depth information, so
it is not possible to predict the exact point along the line
where driver’s gaze is directed. However, we have the 3D
position of the markers, obtained after the calibration (Sec.
V-A). The distance between the target marker and the head
is used to map the probabilistic map of the gaze into the
windshield. First, we map the gaze region in the surface of
a sphere. Then, we project this spherical region onto a camera
image of the windshield. Figure 6 provides three examples
of the probabilistic map for recordings during phase 2. The
black mark is the true gaze location and the heat map shows
the confidence region, where bright pixels indicate higher
probabilities. These figures visualize the confidence region
predicted by the model. Notice that the size of the ellipses
are not equal, which vary according to the uncertainty in the
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relationship between head pose and gaze given the orientation
and position of the head. The white lines represent the 50%
and 95% CIs. A smaller ellipse implies higher confidence
in the data, while a large ellipse implies more ambiguity.
Interestingly, the information is directly learned from the data.
The proposed ideas can be extended to project the probabilistic
map for the gaze onto the road camera image.

VII. CONCLUSIONS

The paper presented a novel probabilistic approach to detect
gaze regions given the position and orientation of the driver’s
head. Instead of directly estimating the actual direction of
gaze, which depends on the driver, cognitive load and the
visual task, the approach estimate a visual attention map
with the probability that the driver is looking to a given
direction. We project confidence regions into the windshield,
which convey the uncertainty associated with the relation-
ship between head pose and gaze. This approach provides
important information about visual attention of the driver,
opening research opportunities for applications in navigation,
infotainment, safety and communication systems.

Our future work includes mapping the confidence regions
from the windshield to the road. This step will allow us to
identify objects and events outside the vehicle that attract the
attention of the drivers, opening new opportunities for ADAS
(e.g., lack of awareness of pedestrians in the road). To achieve
this goal, we need a transformation that projects the probability
distribution onto a 2D map on the road image. Another area
of further improvement is to train more powerful models to
capture the relationship between gaze and head pose, which
will result in smaller and more localized confident regions
for the probabilistic models. An straightforward extension is
to model the temporal dynamic of head pose, as opposed to
evaluating isolated frames. Another alternative is to rely on
deep learning architectures that are appropriate for this task.
A limitation of the approach is the need of the headband to
estimate the position and orientation of the driver’s head. We
will extend the work by using head pose estimations obtained
with computer vision solutions such as OpenFace [2]. We are
also planning to increase the size of the corpus to build more
robust models.
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