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Abstract— The ability to monitor the visual attention of a
driver is a useful feature for smart vehicles to understand the
driver’s intents and behaviors. The gaze angle of the driver
is not deterministically related to his/her head pose due to
the interplay between head and eye movements. Therefore,
this study aims to establish a probabilistic relationship using
deep learning. While probabilistic regression techniques such
as Gaussian process regression (GPR) has been previously used
to predict the visual attention of a driver, the proposed deep
learning framework is a more generic approach that does not
make assumptions, learning the relationship between gaze and
head pose from the data. In our formulation, the continuous
gaze angles are converted into intervals and the grid of the
quantized angles is treated as an image for dense prediction. We
rely on convolutional neural networks (CNNs) with upsampling
to map the six degrees of freedom of the orientation and position
of the head into gaze angles. We train and evaluate the proposed
network with data collected from drivers who were asked to
look at predetermined locations inside a car during naturalistic
driving recordings. The proposed model obtains very promising
results, where the size of the gaze region with 95% accuracy
is only 11.73% of a half sphere centered at the driver, which
approximates his/her field of view. The architecture offers an
appealing and general solution to convert regression problems
into dense classification problems.

I. INTRODUCTION

The visual attention of a driver is an important factor to
understand his/her mental state and his/her ability to perform
relevant actions related to the driving task. Drivers obtain
most of the information to operate a vehicle through vision
and their inability to spot a potentially dangerous situation
such as a pedestrian or another vehicle on the road can lead
to unfortunate accidents. The ability of a smart vehicle to
track where the driver is looking can be a useful feature
for advanced driver-assistance systems (ADAS). In an au-
tonomous driving scenario, the knowledge of the driver’s
visual attention can help a smart vehicle to take decisions
on behalf of a distracted driver or hand over control to
an attentive driver when the machine is unable to make a
complex maneuvering decision.

An accurate system to track the driver’s gaze requires de-
tailed information about the eyes and their pupils. Detecting
gaze requires very specific sets of sensors to efficiently per-
form this task [1], [2]. However, the car environment brings
important challenges to complete this task due to changes
in illumination, occlusions and extreme head rotations. An
alternative approach is to approximate gaze direction with the
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head pose which is easier to track [3], [4]. The knowledge of
the head pose of a driver can be helpful in providing useful
information about the driver’s visual attention [5]. While a
deterministic relationship does not exist between the head
pose and the gaze, there is a strong correlation which can be
leveraged to infer important information about the driver’s
visual attention. We have argued that detecting confidence
regions containing the gaze of the driver using a probabilistic
framework can be more effective than predicting an intrinsic
noisy single gaze point [6].

Jha and Busso [6] proposed a probabilistic method to pre-
dict a confidence region for the gaze of a driver given his/her
head pose. The framework relied on the Gaussian process
regression (GPR) algorithm to predict a Gaussian distribution
of gaze conditioned on the head pose. The GPR framework
assumes that the outputs are samples generated from a Gaus-
sian process that is dependent on the input. The output of
this framework is limited by the Gaussian assumptions. This
study explores a more flexible framework that does not make
any assumption, learning the relation between head pose and
gaze from the data. Recent studies have suggested that using
classification on discretized intervals provides a more generic
approach than predicting a probabilistic map [7]. This paper
leverages this idea with deep learning models. The advances
in deep learning provide an appealing approach to complete
this task with dense neural networks. Using the head pose of
the driver as input, we formulate this task as a classification
problem by discretizing the range of gaze angles. The grid
of various possible horizontal and vertical gaze angles are
treated as an image and a convolutional neural network
(CNN) is used to infer the probabilities at different gaze
angles. The resolution of the grid is gradually increased so
that the resolution and precision of the estimation increase
as the network gets deeper.

The experimental evaluation provides strong evidences
of the capabilities of the proposed model. We can obtain
saliency regions of arbitrary shapes that are learned from the
data. The results provide clear evidences of the benefits of
the proposed architecture where the size of the gaze region
with 95% accuracy is only 11.73% of a half sphere centered
at the driver, which approximates his/her field of view. This
model provides an appealing solution to formulate regression
problems as classification tasks using methods for dense
prediction.

II. RELATED WORK

Estimating the visual attention of a driver from his/her
head pose is an important problem. Several studies have
proposed different solutions [6], [8], [9]. Head pose only
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Fig. 1. The proposed architecture. An image is generated after each upsampling stage. The output at each stage is optimized through back propagation.
There are seven stages: 4×2 (before upsampling), 8×4, 16×8, 32×16, 64×32, 128×64 and 256×128. The figure shows examples of the predicted gaze
regions.

provides partial information about the gaze, so accurate gaze
cannot be predicted solely from the head pose. When a
driver glances at an object, his/her head and eye move to
reach the target point. The interaction between head and eye
movements make the mapping between head pose and gaze
non-deterministic [5]. Therefore, many researchers simplify
the problem by predicting partial gaze information such
as gaze zones [9], [10], studying eyes-off-the-road events
[11], [12] or detecting primary driving actions such as
mirror-checking actions [13]. Jha and Busso [6] proposed an
alternative approach where they predict a confidence region
of gaze depending on the head pose. The approach was a
Gaussian model for the gaze conditioned on the head pose.
Each head pose predicted a Gaussian distribution of possible
gaze directions. The distribution was used to define the
confidence region for the gaze region. This paper proposes
a more generic approach based on deep learning that can
predict an arbitrary distribution without compromising the
accuracy and resolution of the models.

There has been increasing interest in treating a regression
task as a classification problem by discretizing continuous
labels. Recent studies related to image and sound generation
[7], [14] have suggested that a better approach to create an
arbitrary probability distribution is by using a classifier with
softmax activation. This approach is better than regression
techniques such as mixture density network (MDN) [15]. We
argue that this approach can provide a better way to learn an
arbitrary, non-parametric gaze distribution from head pose.
Torgo and Gama [16] discussed different methods to divide
the regression scores into intervals based on priori informa-
tion of the output and the underlying domain. They used an
iterative approach to obtain the most optimum intervals for
a given classification algorithm to get the best regression
accuracy. Frank and Hall [17] suggested an approach to
implicitly consider ordered classification problems, where
the labels represent intervals (such as cold, warm and hot).
They used decision trees to hierarchically split the boundaries
into different regions. Le et al. [18] suggested the use of k-
means clustering to discretize continuous labels using the
dichotomized labels to predict continuous emotional labels
(valence, arousal and dominance). Since the classes need to

be ordered, they use cost-sensitive cross entropy as the loss
function.

Dense prediction has been studied mostly in the field
of image generation, image segmentation [19], and au-
toencoders [20], where each pixel is treated as an output
node. In most of these applications, the inputs and outputs
of the network are both images, so the architecture has
either pooling steps followed by unpooling operations [19],
[21], or a receptive field which is expanded using dilation
[22]. A few studies have considered inverting a CNN for
autoencoders and semantic segmentations [19]–[21]. Since
the pooling layer is non-invertible, Zeiler et al. [21] suggested
an unpooling layer that approximates the inverse of a pooling
operation. It stores the pixel location when pooling so that
they can restore the value to this location when unpooling.
All other pixels are assigned to zero. This approach was also
used by Noh et al. [23] to perform semantic segmentation,
and by Zeiler et al. [20] to regenerate an image from a CNN
to visualize and understand the feature maps. Long et al. [19]
used upsampling to generate a semantic segmentation map.
Since the interpolation function is learned using convolution
layers, they can learn any non-linear interpolation.

These deep learning studies offer appealing solutions to
our problem, where we aim to generate a visual map to
characterize the visual attention of the driver from his/her
head pose. To the best of our knowledge, this is the first
study to explore this idea, opening novel research direction
in this area.

III. METHOD

Our aim is to quantize the gaze angle values into fixed
intervals such that the regression problem can be reformu-
lated as a multi-class classification problem. We transform
the possible horizontal and vertical gaze angles into grids of
equal width, representing the gaze location as an image. We
use an inverted CNN architecture to gradually upsample the
image to increase the resolution of the predicted salient map
region that describes the visual attention of the driver. Figure
1 shows the proposed architecture, which is explained in this
section. We use a technique inspired by transfer learning
[24] and forward thinking [25] to train our model. We use
upsampling layers which repeats the pixel values from a
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(a) Layout of the markers in the UTDrive car

(b) Driver wearing headband

Fig. 2. (a) Markers on the UTDrive car, (b) a driver with the headband.

previous layer, followed by convolution layers to perform the
interpolation operation. The system is retrained after adding
a new upsampling layer, where the entire network is tuned
using back propagation.

As we increase the resolution of the output, the number of
classes becomes unmanageable. For example, if we maintain
the range of horizontal angles between -110◦ and +110◦

and the range of vertical angles between -100◦ and +10◦,
we would need 24,200 classes to obtain a 1◦ resolution.
Furthermore, we also need to maintain spatial consistency in
the output, where a confusion between (1,1) and (100,100)
should be penalized more than a confusion between (99,99)
and (100,100). We address these problems by using CNNs
with gradual upsampling.

A. Network Architecture

This section explains the overall architecture that takes
the head pose characterized by a 6D input vector (three
head position coordinates and three head rotation angles) and
provides an output map of 256x128 pixels. Figure 1 describes
the architecture, which is inspired by a deconvolution net-
work that inverts a CNN [19]. We start with a fully connected
layer that connects the 6D feature vectors into a layer with
eight nodes. The output of this layer is reshaped into a 4×2
array. We pass the 4×2 array through a convolution layer
with eight filters of size 3×3. The image is upsampled by two
and passed through a convolution layer to form eight 8×4
images. The upsampling and convolution steps are repeated
five more times increasing the size of the image by a factor of
two at every step until we get eight 256×128 images. Each
convolution layer uses rectified linear unit(ReLU) activation
layers and a dropout of p=0.5. Finally the eight 256×128
image maps are combined using an additional CNN layer
followed by a softmax activation, which converts the final
output image into a probability map. Table I summarizes the
architecture.

B. Training

The training of this network is challenging because (1)
the network architecture is deep and diverging (i.e., instead

TABLE I
PROPOSED DEEP LEARNING ARCHITECTURE.

Layer Spec Activation Dropout Output Dimension
Dense 8 ReLU 0.5 1 x 8

Reshape 4 x 2 - - 1 x 4 x 2
Conv2D 8, 3x3 ReLU 0.5 8 x 4 x 2

Upsampling2D 2x2 - - 8 x 8 x 4
Conv2D 8, 3x3 ReLU 0.5 8 x 8 x 4

Upsampling2D 2x2 - - 8 x 16 x 8
Conv2D 8, 3x3 ReLU 0.5 8 x 16 x 8

Upsampling2D 2x2 - - 8 x 32 x 16
Conv2D 8, 3x3 ReLU 0.5 8 x 32 x 16

Upsampling2D 2x2 - - 8 x 64 x 32
Conv2D 8, 3x3 ReLU 0.5 8 x 64 x 32

Upsampling2D 2x2 - - 8 x 128 x 64
Conv2D 8, 3x3 ReLU 0.5 8 x 128 x 64

Upsampling2D 2x2 - - 8 x 256 x 128
Conv2D 8, 3x3 ReLU 0.5 8 x 256 x 128
Conv2D 1, 3x3 Softmax 0.5 1 x 256 x 128

of starting from several nodes and converging into few
classes, our network starts with six nodes and ends with
32,768 labels (i.e. 256×128), and (2) unlike a regular multi-
class classification problem, the labels need to be spatially
consistent (i.e., the errors between classes are not equal).
To address these challenges, we gradually add layers into
the network by training the network after each cycle of
upsampling. This approach is adopted instead of training the
entire network at once. This process is possible, because we
can quantize the continuous value into different levels of the
discretion, and, hence, we have ground truth generated for
each intermediate layer. To train the network, we add a CNN
layer with a single channel output, followed by a softmax
activation. The network has seven upsampling stages starting
with an output image with 4×2 pixels, and finishing with
an output image with 256×128 pixels. This method makes
the training process more manageable, as it provides a good
initial estimate for each new layer of upsampling. Notice
that this approach increases the resolution of the predicted
gaze region. The spatial dependency is implicitly considered
by using CNN and gradual upsampling, as the pixels that
are closer to each other share the nodes in the early layers.
Figure 1 shows the outputs of the model at each stage of the
training process.

We use Keras [26] with Tensorflow [27] backend to design
and train our model. We change the learning rate and number
of epochs depending on the training stage. The initial stage
is trained for 1,000 epochs with a learning rate of 1e-3 to
obtain a good initial model. Stages 2 - 5 are trained for 200
epochs with a learning rate of 1e-3. The last two stages are
trained with a lower learning rate of 1e-4 for 500 epochs. We
use Adam optimizer [28] in all the stages. The loss function
is given by the KL-divergence between the one-hot coded
target image and the predicted image.

IV. DATABASE

We use the naturalistic database presented in Jha and
Busso [5] using the UTDrive vehicle. Drivers were asked to
look at predefined markers multiple times while driving. We
attached 21 markers inside the car, in the field of vision of
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the driver (e.g., windshield, mirrors, radio, and gear). Figure
2(a) shows some of the markers. We collected data from
16 drivers (10 males, 6 females). The data consists of three
phases. In phase I, the subjects completed the task when
the car was parked. In phase II, the subjects completed the
task while driving the car. In phase III, the subjects were
asked to turn their head completely toward each marker while
the car was parked. This study only uses data collected in
phase II. The drivers wore a headband with AprilTags [29],
as shown in Figure 2(b). Since the accuracy of head pose
estimation algorithms in a naturalistic driving environment
is still a challenging problem [30], we rely on the head pose
estimation obtained from the headband. While relying on
the headband limits the deployment of the algorithm in real
world applications, it provides more reliable training data to
build our framework. The framework can be easily adapted
when more robust head pose estimation algorithms become
available.

To normalize the head pose values for each driver, the
positions from the tags are averaged over a long-term driving
data of each subject, and the value is subtracted from
each frame. The rotation angles are also averaged in the
quaternion space using spherical linear interpolation (slerp),
and all the frames are rotated by the negative of the average.
To calculate the gaze angles, we estimate the unit vector
(ĝ(x,y,z)) pointing to the target gaze location (Gazeloc) from
the head position (Hposition):

ĝ(x,y,z) =
Gazeloc −Hposition

‖Gazeloc −Hposition‖
(1)

The horizontal angle θ is given by the angle between the
projection of the gaze vector in the x-z plane and the z-axis.
The vertical angle φ is given by the angle between the gaze
vector and the x-z plane.

θgaze = arctan
gx
gz

φgaze = arctan
gy√

g2x − g2z

(2)

We test our model with subject independent partitions. The
data from fourteen subjects are used to train the model, and
data from two subjects are used to test the data. We repeat
the process five times using different partitions. We report
the average results over the five data partitions.

V. RESULTS
We present experimental evaluations to study the effec-

tiveness and reliability of the proposed method. Section V-
A studies the prediction efficiency of the proposed method
after every upsampling stage. We also compare the result
of our model with the previously proposed method based
on the GPR algorithm [6] (see Section II). Section V-
B demonstrates the use of this model by visualizing two
examples where the map is predicted from the head pose
inputs.

A. Accuracy versus Precision

Our aim is to design a system that provides an accurate
estimation of gaze within a region of confidence (saliency
map). There is a trade-off between the size of the confidence
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Fig. 3. Accuracy versus precision at different intermediate resolution for
the proposed network.

region and the accuracy of the model (whether the region
includes the true gaze). If the area is too large, the estimation
does not carry enough information. If the area is too small,
the accuracy may not be good for real world applications.
Hence, we study the performance of the model by comparing
the accuracy with the size of the region of confidence.
The softmax output of the proposed framework creates a
probability map. We can set a threshold to determine the size
of the confidence region. It the threshold decreases, the gaze
area increases, which results in higher accuracy but worse
spatial resolution. We quantify the size of the confidence
region as the percentage of the predicted region from half
of a sphere centered on the driver with 180◦ of horizontal
and 180◦ of vertical angles. This sphere approximates the
driver’s field of view. This metric does not depend on the
radius of the sphere, which would be important if we want
to project the region onto the windshield.

Figure 3 plots the area of confidence against the percentage
of the gaze included in the selected area at different resolu-
tion. The model is tested after each stage of upsampling.
The x-axis provides the percentage of half of the sphere
covered by the predicted gaze region. The y-axis provides the
accuracy indicating whether the gaze direction is included in
the predicted gaze region. With low resolution architectures
(e.g., 4×2), the accuracy of the gaze region is high, but
each interval represents a large area reducing the spatial
resolution of the model. With each subsequent upsampling,
the resolution increases but the confusion between adjacent
labels also increases. Since we are interested in the gaze
region, instead of the actual pixel, this is not a problem as
the accuracy increases with respect to the predicted area.
Increasing the resolution also increases the computational
complexity and the time to train the model. Therefore, we
stop at 256×128, which gives us a reasonable resolution
(∼1◦). We observe a small degradation in performance when
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Fig. 4. Accuracy versus precision results for the proposed architecture
and the GPR model [6]. The figures highlight the 50% and 95% accuracy
points.

TABLE II
PERCENTAGE OF THE HALF OF THE SPHERE INCLUDED IN THE

PREDICTED GAZE REGION WHEN THE ACCURACY IS 50%, 75%, AND

95%.

Proposed model GPR
Training Data Test Data Training Data Test Data

50% 1.87 2.08 1.22 1.39
75% 3.75 3.95 2.44 3.06
95% 8.95 11.73 6.71 7.57

evaluating the models on the test set.
Figure 4 compares the performance of the final output

layer with 256×128 resolution with the model based on the
GPR method proposed by Jha and Busso [6]. An advantage
of the proposed method is that we can choose any arbitrary
resolution depending on the requirements. In this study, we
evaluate the performances obtained by the 256×128 model.
Table II reports the percentage covered by the predicted
region of half of the sphere when the accuracy is 50%, 75%
and 95%. We observe that the results of the proposed model
closely resemble the results of the GPR model. However,
the accuracy of the GPR model is slightly higher. We
hypothesize that one of the factor for the lower performance
of the proposed model is the lack of resolution on the
train data for the target gaze locations, as we only have 21
markers. The gaze prediction tends to converge to square
regions centered at the location of these markers (see gaze
region predicted in Figures 1 and 5). This problem can
be addressed by using more markers, or a database with
equipments to intrusively record the drivers gaze for each
frame. Unlike the GPR model, the proposed framework is
a non-parametric model, which has more potential as it can
learn arbitrary distributions from the data.

B. Visualizing the Gaze Regions

We show two examples in Figure 5 to visualize the output
predicted by the model. Figures 5(b) and 5(e) show the

predicted gaze region when the accuracy is 50% for the
head poses described in Figures 5(a) and 5(d). These regions
correspond to 1.74% of the half sphere. The green dots
indicate the target gaze location. Likewise, Figures 5(c),
and 5(f) show the gaze region when the accuracy is 95%.
These regions correspond to 9.82% of the half sphere. The
values range between -110◦ and +110◦ in yaw angles and
between -100◦ and +10◦ in pitch angles. In Figures 5(a)-
5(c) the ground truth gaze location is marker 2. Our model
predicts with high precision that the gaze is directed towards
the front. Similarly, in Figures 5(d)-5(c), the subjects head
is turned toward the left. In the predicted map, we observe
that the model predicts with high probability that the subject
is looking at the left of the windshield. We observe that the
true gaze direction is close to the predicted gaze region with
50% accuracy. The region for 95% accuracy included the
target gaze direction.

VI. CONCLUSIONS

This study proposed an efficient method to estimate the
driver’s visual attention using a generic probability distri-
bution using deep learning. We gradually up-sample the
resolution of the gaze region, which increases the accuracy
and spatial resolution of the prediction. We enforced that
nodes have strong correlation with their neighbor nodes using
CNNs. The intensity of each pixel in the image indicates
the probability of the target gaze to be directed toward
a given direction. The proposed architecture is a novel
solution for probabilistic regression, leveraging the predicted
power of dense networks. This model provides an appealing
solution, not only for our target application, but also for other
predictive tasks. This architecture can be easily adapted to
other fields to formulate regression problems as classification
tasks. For example, if the number of variables is greater
than two, the approach can be implemented with multi-
dimensional convolution layers.

While the proposed approach is a non-parametric model
without making any assumption, we observe that the perfor-
mance is slightly lower than the GPR model. To address this
problem, we can investigate more advanced models. We can
add multiple CNNs in each layer to make the interpolation
function more generic. We can also use more advanced loss
functions, which are sensitive to the distance between nodes.
Adding eye related features is also expected to improve the
accuracy of the system, increasing the number of inputs,
which in the current model is only six. The dataset that
we used has gaze labels only at fixed points. This is an
important limitation of our implementation. If the training
data include higher resolution of the target gazes, the model
will learn more accurate gaze regions of arbitrary shapes.
Databases collected with gaze tracker can provide us with
richer continuous labels to train the model.
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