

USC Viterbi School of Engineering

Emotion Recognition Using Hierarchical Decision Tree Approach

Chi-Chun Lee, Emily Mower, Carlos Busso, Sungbok Lee, Shrikanth Narayanan Signal Analysis and Interpretation Laboratory (SAIL) Electrical Engineering Department University of Southern California

Introduction

• 2009 Interspeech Emotion Challenge

- Classifier Sub-Challenge
- Five Emotion Classes
 - Emphatic, Angry, Neutral, Positive, Rest

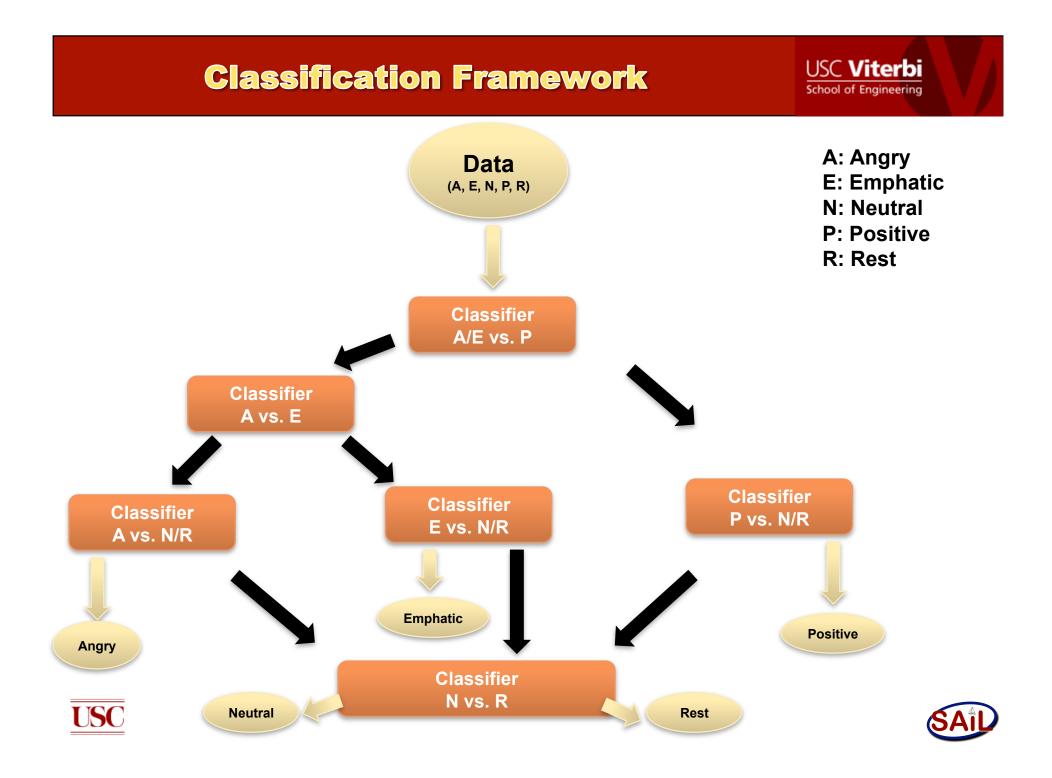
AIBO Database

- Training: 9959 labeled
- Testing: 8257 unlabeled
- 384 Dimension Feature Vector

Primary Performance Measure

- Unweighted Recall Percentage
- Weighted Recall Percentage

Proposed Method



We used a combination of binary classifiers instead of one multiclass classifier

We proposed a classification framework composed of a hierarchical tree, where the top level classification was performed on the *easiest* emotion recognition task

Classifier Implementation

- Binary Classifier
- Gaussian prior on model coefficients β
- Threshold tuning based on balanced error rate criterion

Support Vector Machine

- Binary Classifier
- Linear Kernel
- Cost of Error, C, was set to approximate the distribution of data

Feature Selection

- Six sets of features
- Forward feature selection using binary logistic regression

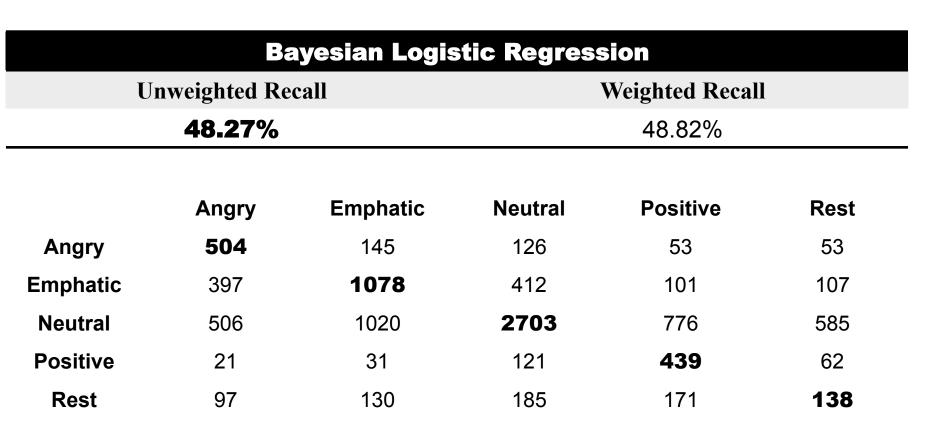
Feature Normalization

- z-normalize – μ , σ^2 calculated from the neutral data in the training dataset

USC **Viterb**

Experiment I: Leave one speaker out - 26 fold - cross validation on the training dataset

Experiment II: Evaluate performance on the unlabeled testing dataset


Experiment I : Result & Discussion

Bayesian Logistic Regression			
Unweighted Recall	Weighted Recall		
48.27%	48.82%		

USC Viterbi

	Angry	Emphatic	Neutral	Positive	Rest
Angry	504	145	126	53	53
Emphatic	397	1078	412	101	107
Neutral	506	1020	2703	776	585
Positive	21	31	121	439	62
Rest	97	130	185	171	138
USC		94.8	82 % Recall		6

Experiment I : Result & Discussion

- **Rest** is recognized at about chance level
- Comparable recall percentage for emotional classes (Angry, Emphatic & Positive)

USC Viterbi

Experiment I : Result & Discussion

Support Vector Machine			
Unweighted Recall	Weighted Recall		
47.44%	46.84%		

	Angry	Emphatic	Neutral	Positive	Rest
Angry	463	159	123	57	79
Emphatic	322	1041	424	156	150
Neutral	386	930	2548	958	768
Positive	27	29	103	446	69
Rest	80	123	159	192	167

USC Viterbi

Experiment II : Result & Discussion

Submitted Results on Test Dataset						
		Unweig	ghted Recall	Weighted Recall		
Baseline		38.20%		39.20%		
Bayesian Logistic Regression		41.57%		39.87%		
Support Vector Machine		40.84%		38.	38.05%	
	Angry	Emphatic	Neutral	Positive	Rest	
Angry	290	171	65	63	22	
Emphatic	210	752	325	136	150	
Neutral	748	1094	2047	1109	369	
Positive	23	13	39	131	9	
Rest	95	58	134	197	62	

• 3.37% absolute (8.82% relative) improvement (Bayesian Logistic Regression)

• 52% recall percentage for emotional classes (Angry, Emphatic & Positive)

• 25% recall percentage for non-emotional classes (Neutral, Rest)

Conclusion & Future Work

- 3.37% absolute (8.82% relative) improvement over baseline
- Carefully designed hierarchical structure
- Easier classification task as first level

Future Work

- Other feature selection scheme (large-margin based)
- Ensemble learning techniques
- Soft decision at every decision level

USC Viterb

This work was supported in part by funds from NSF, Army, USC Annenberg Fellowship, Intel Foundation PhD Fellowship

