DALLAS Evaluating the Robustness of an Appearance-based Gaze Estimation Method for Multimodal Interfaces

Nanxiang Li and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas, Richardson, Texas, 75083, U.S.A.

Motivation

Advantages of Gaze-aware Multimodal Interfaces

- Natural and fast
- Related to the users' cognitive state

Challenges

 Tedious calibration process Sensitive against variability in real applications

Aim of this Study

- Collect a multimodal corpus for gaze Evaluate an appearance-based method
- for gaze tracking based on PCA
- Evaluate the robustness of the proposed method against
- Head movement
- Calibration pattern
- User distance to the monitor
- Individual differences
- Different sessions

UT DALL.

~)

(b) Kinect Image

Monitor projects a target point randomly chosen from the 23 highlighted grids as both webcam and Kinect record the subject behavior

Recor

Data Collection Protocol

- 46 subjects (gender balanced)
- Diverse ethnic representation
 - Caucasian 16 subjects
 - Asian 10 subjects Indian – 10 subjects
 - Hispanic 10 subjects
- Two sessions on different days
- 14 recordings per session
- (training 12, testing 2)

ording	Head Movement	Distance	Pattern	
1	Yes	User-defined	Testing	
2	Yes	User-defined	Training	
3	Yes	Near	Training	
4	Yes	Medium	Training	
5	Yes	Medium	Training	
6	Yes	Far	Training	
7	Yes	Far	Training	
8	No	User-defined	Testing	
9	No	User-defined	Training	
10	No	Near	Training	
11	No	Medium	Training	
12	No	Medium	Training	
13	No	Far	Training	
14	No	Far	Training	

Recordings conditions for each session (Near - 0.4 meter, Medium - 0.5 meters, Far - 0.6 meter)

Appearance Based Gaze Estimation

Proposed Approach

- We use patch with both eyes
 - Reliable for eye detection
 - Robust against head motion

Eye pair image extraction using cascade object detector

 We estimate eigenvectors from the covariant matrix of the training images

- Select 30 principle components
- Build linear regression model
 - Independent variables projections into the eigenspace
 - Dependent variables the x, y coordinates on the screen

Experimental Results

- Performance Metrics
- Correlation (ρx, ρy), Angular error (Θerror) Effect of calibration pattern (~15 grids)

Subject Dependent Results

	Without head motion			With head motion			
Distance	ρχ	ργ	Oerror	ρχ	ργ	Oerror	
Near	0.90	0.85	4.7	0.91	0.84	4.5	
Medium	0.89	0.84	3.8	0.91	0.83	3.9	
Far	0.88	0.83	3.5	0.90	0.83	3.4	
User-Defined	0.89	0.82	3.9	0.88	0.82	3.9	

Subject Independent Results

	With	out head	d motion	With	head	motion
Distance	ρx	ρ	Oerror	ρχ	ργ	Θ_{error}
Near	0.85	0.76	7.0	0.87	0.75	6.8
Medium	0.86	0.75	6.0	0.85	0.74	5.9
Far	0.85	0.68	5.3	0.85	0.73	5.2
User-Defined	0.85	0.78	5.9	0.86	0.70	6.0

Discussion

- Consistent performance for subjectdependent models
- Head motion
- User-interface distance
- Sessions
- Performance on the subjectindependent model slightly decreases
- It does not need calibration

Future Directions

- Use Kinect and Webcam images
- Improve performance under subjectindependent conditions
- Find subjects with similar eye appearance to PCA
- Apply whitening transformation on the training image covariance matrix
- Implement the proposed method in mobile devices

Acknowledgements: NSF and Samsung