Rear-end Collision Prevention Using Mobile Devices

Nanxiang Li, Amardeep Sathyanarayana, Carlos Busso and John H.L. Hansen

Introduction

29% of the crashes are rear-end collisions
State-of-the-art ADASs are only available in luxury cars
Mobile devices are used within vehicular environment

- Goal: Use the built-in camera of commercial portable devices to detect frontal vehicle for preventing rear-end collisions

Frontal Vehicle Detection and Distance Estimation

- Device: Samsung Galaxy Tab10.1WiFi (1280x720 at 30 fps)

- Naturalistic Driving Data
- One car, over 30 hours
- Various weather and road conditions

Controlled Data

- 3 cars, 2 are used each time
- Tablet mounted on ego vehicle
- Second vehicle moving in front
- Known distance between cars

- Detecting frontal vehicle - Viola Jones Algorithm (OpenCV)
- 3000 manually marked tail light objects for positive images
- 3496 negative images
- 3019 general images
- 477 specific images (road scene without vehicle)

Samples of manually highlighted tail light objects

- Estimating Frontal Vehicle Distance
- Apply detector on controlled data
- Map the size of the detected tail light object to the distance

Detection Result and System Integration

- Naturalistic Driving Data
- Distance approximated with the mapping
- 5 distance groups (< $10 \mathrm{~m}, 10 \mathrm{~m}-20 \mathrm{~m}$, $20 \mathrm{~m}-30 \mathrm{~m}, 30 \mathrm{~m}-40 \mathrm{~m},>40 \mathrm{~m}$)
- Average detection rate is 83.2\%

Challenge: Blinking indicators
 - Challenge: Adverse Illumination
 Challenge: Similar appe tail light and the vehicle itself

System Integration

- GPS estimates speed of ego-vehicle
- Accelerometer estimates the driver's intention to accelerate or decelerate

Conclusions \& Future Work ${ }^{4}$

Vehicle tail-light detector with high detection rate

- 93.9% in controlled recordings
- 83.2\% in naturalistic recordings

Frontal vehicle distance estimation using mapped object size
IMUs and GPS sensors to estimate the vehicle dynamics using mobile device for rear-end collision prevention

Future Directions:

- Include more challenging conditions including night recordings - Consider temporal information (tracking algorithms)
- Focus on detecting the front-vehicle
$\cdots+\cdots$
actions (braking, turning, etc.)

