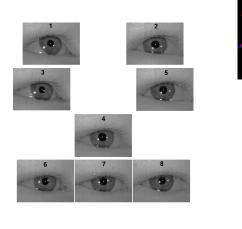
User-Independent Gaze Estimation by Exploiting Similarity Measures in the Eye Pair Appearance Eigenspace

Nanxiang Li and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory Department of Electrical Engineering, The University of Texas at Dallas, Richardson TX-75080, USA nxl056000@utdallas.edu, busso@utdallas.edu

Motivation

- Gaze indicates visual awareness
 - Human-computer interaction (HCI)
 - Market analysis
 - Social behavior
 - Driver distraction


2

Common Approach

- User and setting specific parameters are acquired by calibration
 - Repetitive and tedious calibrationConstraints imposed on the process
 user

Field of Interest

IR light

3

Our Vision

- User-independent gaze estimation that do not require calibration, or put any constraints on the users
 - Appearance-based approach (simple system setting)
 - Focus on eye pair image (implied head pose)
 - Large database (capture variance among the users)

MSP-GAZE Database

5

It considers:

- Individual differences
 - 46 subjects
 - Gender balanced
 - Diverse ethnic groups (Caucasian - 16, Asian - 10, Indian - 10, and Hispanic -10)
- Head movement
 - Balanced between with and without head movement

- Inter-session variability
 - Two sessions for each subject on two different days
- Distance between user and screen
 - User defined
 - Near 0.4m
 - Medium 0.5m
 - Far 0.6m

MSP-GAZE Database

System setup

Microsoft Kinect for Windows

(b) Kinect Image

MSP-GAZE Database

Recording	Head Movement	Distance	Pattern
I	Yes	User-defined	Testing
2	Yes	User-defined	Training
3	Yes	Near	Training
4,5	Yes	Medium	Training
6,7	Yes	Far	Training
8	No	User-defined	Testing
9	No	User-defined	Training
10	No	Near	Training
11,12	No	Medium	Training
13,14	No	Far	Training

7

Highlights of the Study

Appearance based model

• Eigenspace representation (PCA)

 Reduce the gap between user-dependent (UD) and user-independent (UI) gaze estimation

- Similar frame
- Similar subject

UTD

Appearance Based Model

- Eigenspace representation (PCA)
 - PCA construct the orthogonal basis eigenvectors to the larger eigenvalues of the covariance matrix Σ .

 $\Sigma = \sum_{i=1}^{i=1} N_{\Phi_{i}} = \text{mean removed vectorized eye pair images}$ $\Phi_{i} \uparrow T \Phi_{i}$

- These bases capture the main variance among the eye appearance
- We use the projections to these bases as independent variables to build regression model for gaze estimation

Appearance Based Model

PCA and Regression model for gaze estimation

≠β{*₩*β*\ps*t2++β./+γβ*\ps*t30++βlBj02*@*1B80.,.*i*+βt5>B680l&00,*@*/16

2.1

Difference between UD and UI

User Dependent Results

	Without head motion			With head motion		
Distance	ρχ	ρ	O error	ρχ	ργ	O error
Near	0.90	0.85	4.7	0.91	0.84	4.5
Medium	0.89	0.84	3.8	0.91	0.83	3.9
Far	0.88	0.83	3.5	0.90	0.83	3.4
User-Defined	0.89	0.82	3.9	0.88	0.82	3.9

2.0

User Independent Results

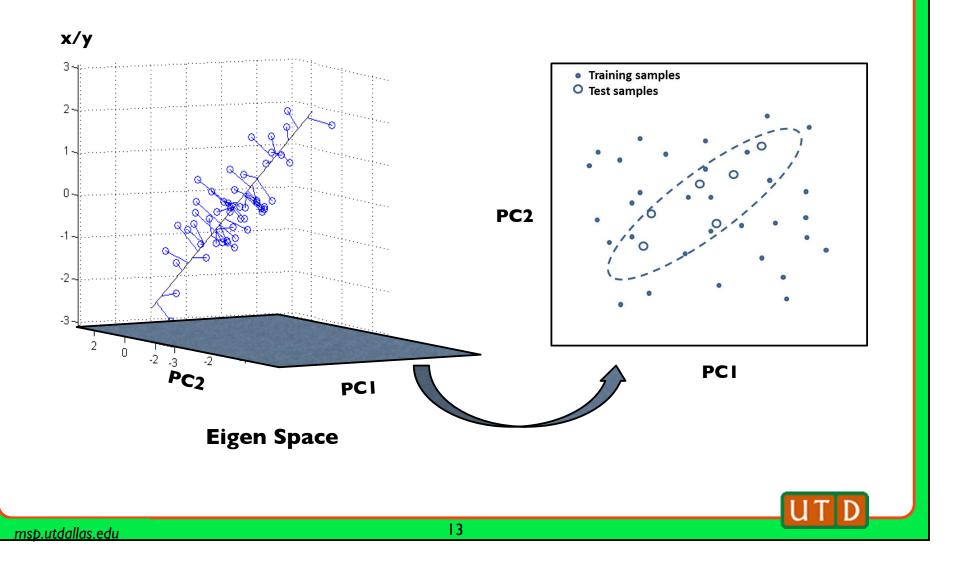
	Without head motion			With head motion		
Distance	ρχ	ργ	O error	ρχ	ρ	O error
Near	0.85	0.76	7.0	0.87	0.75	6.8
Medium	0.86	0.75	6.0	0.85	0.74	5.9
Far	0.85	0.68	5.3	0.85	0.73	5.2
User-Defined	0.85	0.78	5.9	0.86	0.70	6.0

ш

 ρ_x - x correlation; ρ_y - y correlation; Θ_{error} – angular error

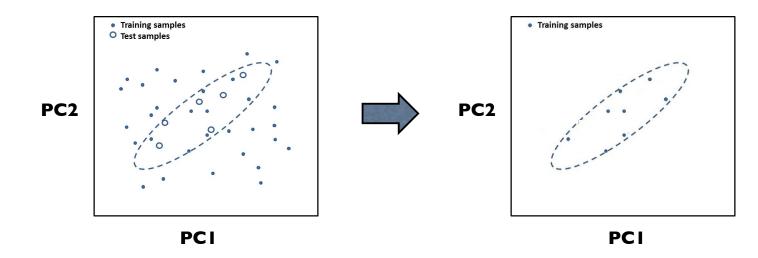
Difference between UD and UI

Challenges in UI gaze estimation


 Individual differences affect the orthogonal basis to represent the target subject

Based on the premise that "not all data is good data", we use similarity measures in the eigenspace to find "good data"

- Similar frames
- Similar subjects


 $\Sigma \downarrow A l l \qquad \Sigma \downarrow S = \Sigma i \in S \uparrow m$ $= \Sigma i = 1 \uparrow N \qquad \Phi \downarrow i \uparrow T \Phi \downarrow i$ $\Phi \downarrow i \uparrow T \Phi \downarrow i$

Finding Similar Data

Finding Similar Data

Similar frames

Similar subjects

The most frequently appeared subject in the similar frames

Finding Similar Data

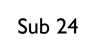
Test image

Identified Similar frames

Sub 36

Gaze positions (68, 160)

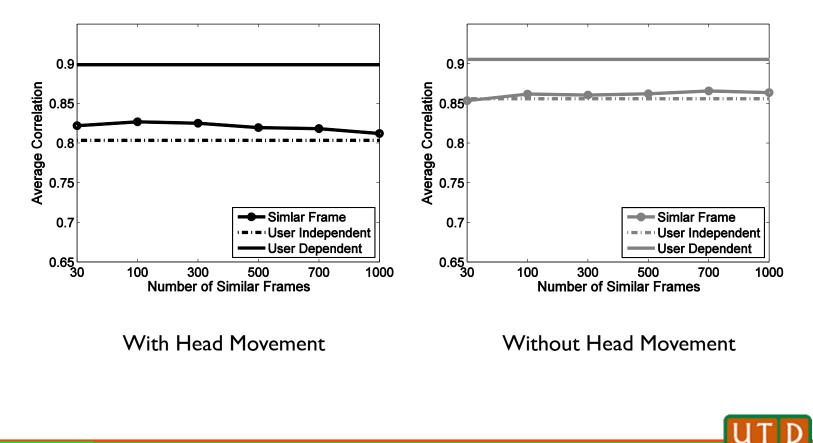
Sub 44



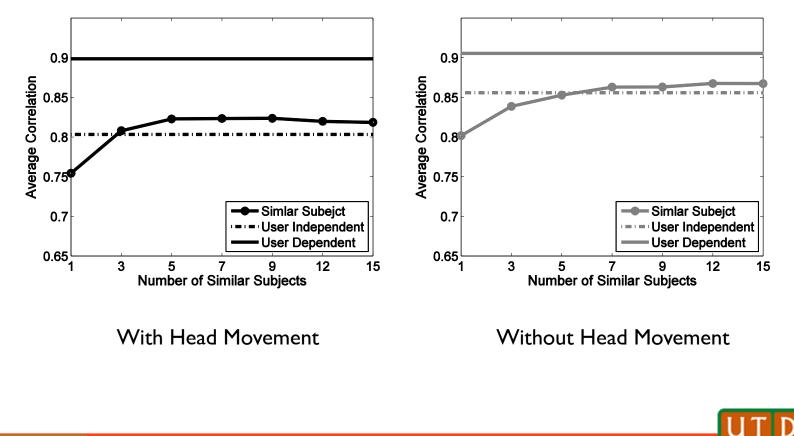

Gaze positions (75, 99)

Sub I

Gaze positions (1600, 967)


Gaze positions (1526, 931)

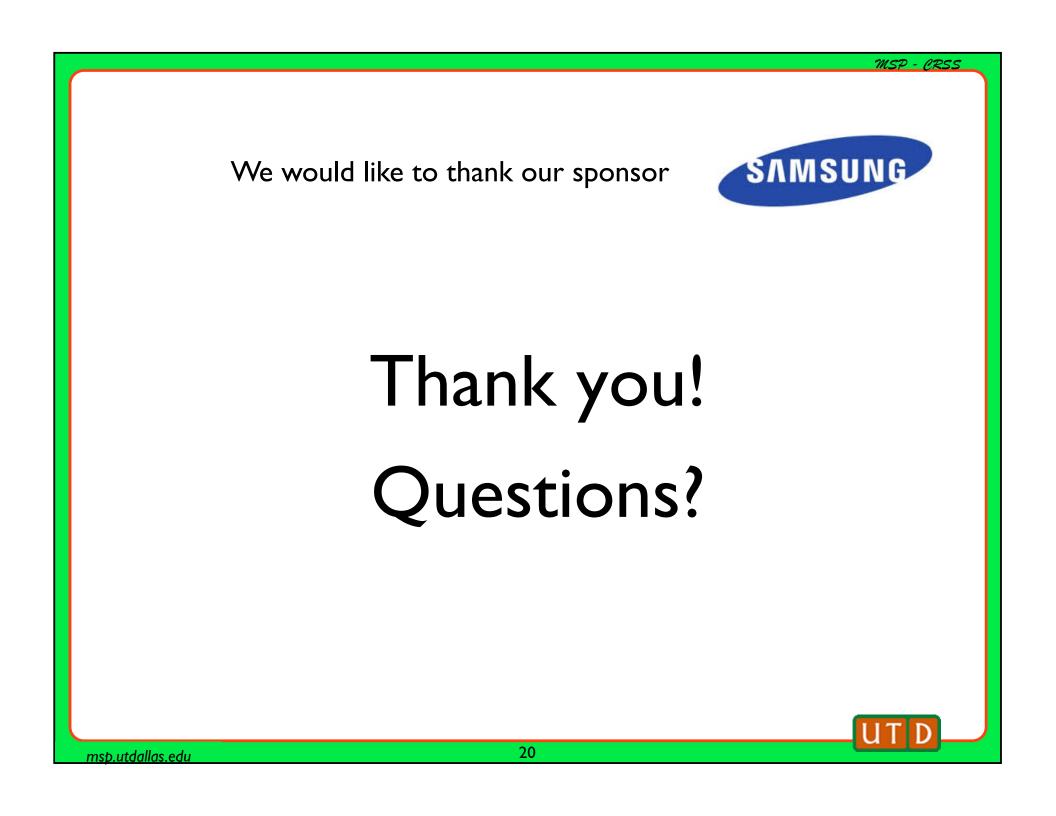
msp.utdallas.edu


Experiment results

Similar frames

Experiment results

Similar subjects



Experiment results

		Without head movement		With head movement		
	Distance	ρχ	ρ _y	ρx	ρ _y	
7 Similar subjects	Far	0.90	0.79	0.88	0.72	
	Medium	0.93	0.82	0.90	0.74	
	Near	0.93	0.87	0.93	0.78	
	User-Defined	0.91	0.78	0.88	0.74	
l 00 Similar frames	Far	0.90	0.81	0.88	0.72	
	Medium	0.92	0.80	0.90	0.74	
	Near	0.93	0.82	0.93	0.77	
	User-Defined	0.92	0.81	0.90	0.76	

Conclusion

- We identified similar training data samples in the eigenspace for user-independent gaze estimation
- We used the reduced training set to build the eye appearance eigenspace
- By user-independent model, the proposed approach eliminates the requirement for calibration
- For real application, start with user-independent models, as more test samples become available, create and update the reduced set S

