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Abstract— Along with emotions, modulation of the lexical
content is an integral aspect of spontaneously produced facial
expressions. Hence, the verbal content introduces an unde-
sired variability for solving the facial emotion recognition
problem, especially in continuous frame-by-frame analysis
during spontaneous human interactions. This study proposes
feature and model level compensation approaches to address
this problem. The feature level compensation scheme builds
upon a trajectory-based modeling of facial features and the
whitening transformation of the trajectories. The approach
aims to normalize the lexicon-dependent patterns observed
in the trajectories. The model level compensation approach
builds viseme-dependent emotional classifiers to incorporate the
lexical variability. The emotion recognition experiments on the
IEMOCAP corpus validate the effectiveness of the proposed
techniques both at the viseme and utterance levels. The accu-
racies of viseme level and utterance level emotion recognitions
increase by 2.73% (5.9% relative) and 5.82% (11% relative),
respectively, over a lexicon-independent baseline. These perfor-
mances represent statistically significant improvements.

I. INTRODUCTION

The face is an expressive and rich channel to communi-
cate feelings, intentions and desires. Emotions influence the
externalized facial expressions [1]. Likewise, the articulation
process modulates the facial appearance [2]. Therefore, facial
expressions simultaneously convey both linguistic and affec-
tive messages [3], [4]. As a result, the underlying linguistic
content imposes an undesired variability that affects the
performance of facial emotion recognition systems (e.g.,
confusing a phoneme /ey/ with a smile). Decoding the
emotional content requires the understanding and modeling
of the interaction between the linguistic and affective goals.
This work explores methods to compensate for the variability
introduced by the articulation process (i.e., lexical content).
These compensation approaches represent novel advances
toward developing robust facial emotion recognition systems.

Given the strong influence of the lexical variability in the
orofacial area, the facial features extracted from this area
are usually ignored in video-based (i.e., dynamic) emotion
recognition systems [5]. This approach is supported by our
previous study that showed a strong effect of the lexical
content on the orofacial area [6]. The lexical influence is
considerably reduced in the middle and upper face areas.
However, the lower face provides important information that
an emotion recognition system should exploit. The challenge
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is to design schemes able to compensate or model the lexical
variability observed in the orofacial area, especially in con-
tinuous frame-by-frame analysis of spontaneous interactions.

This study proposes strategies to enhance facial emotion
recognition systems by modeling the underlying lexical con-
tent. The lexical content is represented in terms of visemes,
which are the visual counterparts of the phonemes in facial
expressions. The proposed strategies are implemented at the
feature and model levels. The feature level approach consists
in normalizing the facial features with respect to the given
visemes. The normalization reduces the lexical variability in-
creasing the performance of the emotion recognition system.
The proposed normalization method builds upon trajectory-
based modeling of the facial features. It consists in the
whitening transformation of the feature trajectories. The
model level approach is implemented by constraining the
emotional models on the underlying visemes. The viseme
level emotion recognition experiments give a significant
improvement by utilizing the proposed methods, over a
lexicon-independent baseline system. Then, several fusion
approaches are explored to combine the viseme level clas-
sifiers to estimate the emotions at the utterance level. The
utterance level emotion recognition results also show mea-
surable improvements in performance, when the proposed
compensation methods are incorporated.

The rest of the paper is organized as follows. Section
II discusses related studies and our preliminary findings on
factors influencing facial expressions. Section III describes
the database and the required preprocessing steps. Section
IV describes the proposed lexical variability compensation
methods at the feature and model levels. Section V presents
the experimental emotion recognition results that validate the
proposed compensation methods. Section VI discusses the
results, and summarizes potential extensions of this study.

II. BACKGROUND

A. Related Works

While impressive advances have being been made in
recognizing emotions from images with prototypical ex-
pressions, an important open challenge that remains open
is the modeling of the temporal dynamics with respect
to the lexical content of facial expression in spontaneous
human interaction [7]. Ambadar et al. [8] used subjective
evaluations to demonstrate the importance of perceiving the
temporal dynamics to discriminate between subtle facial
expressions as compared with the case in which the subject
only evaluated static presentations. Pantic [9] highlighted the
role of facial expression dynamics in different emotional and





III. DATABASE AND PREPROCESSING STEPS

This study considers the Interactive Emotional Dyadic

Motion Capture (IEMOCAP) database [15] to study differ-
ent strategies for mitigating the lexical variability in facial
expressions. This database was collected to analyze affective
aspects of human communication through acoustic and visual
channels (approximately 12 hours). The emotional manifes-
tations are collected during dyadic conversation between two
actors (one male and one female). In the first part of the
recordings, the actors played three scripts. The second part
consists of improvisations, in which the actors discussed
hypothetical scenarios (e.g., losing a baggage at the airport or
getting married). The scripts and scenarios are deliberately
chosen to evoke spontaneous emotional reactions. In total,
ten actors participated in five sessions of data collection. The
corpus contains motion capture data and speech. The motion
capture data comprises 53 markers placed on the actors’ face
to capture detailed facial movements (6 extra markers were
also included to capture hand movements). Figure 2 depicts
the markers placement on the face. The marker information
is represented with its position in the three dimensional space
(X , Y and Z). The markers are tracked with a VICON
system at 120 Hz. The markers are translated and rotated
to compensate for head motion (details of the approach are
given in Busso et al. [15]). The spontaneous dialogs are
segmented into turns, which are manually annotated. The
precise phoneme and word boundaries are obtained with
forced alignment. Three evaluators assessed the emotional
state of the actors at the turn level. The evaluation included
the affective states anger, sadness, happiness, disgust, fear,
surprise, frustration, excited, neutral and other. The com-
prehensive description of the database is given in Busso et
al. [15].

The inherent differences in the facial structure of the actors
and actual placement of the markers introduce variabilities
that requires proper normalization. A marker normalization
scheme is proposed, in which the female speaker in the
first session is arbitrarily selected as a reference. Using Z-
normalization, the first and second order statistics of the
markers are matched to the reference speaker. Equation 1
summarizes this process. Parameters µ and σ are the mean
and standard deviation of the markers. For speaker s, the ith

marker in direction d ∈ {X,Y, Z}, (ms
i,d), is transformed to

have the same statistics as the reference speaker (ref ),

ḿs
i,d = (ms

i,d − µs
i,d)×

σref
i,d

σs
i,d

+ µref
i,d . (1)

Building emotional models requires sufficient amount of
samples (see Sec. IV-A). Hence, only the four most frequent
emotions in the database are considered for the experiments.
These emotional classes are happiness, anger, sadness and
neutral. For consistency with other emotion recognition stud-
ies on this corpus [6], [16], the utterances labeled as excited
and happiness are merged into a single class set. Table I
reports the emotion distribution of the selected portion of
the database.

TABLE I

DISTRIBUTION OF EMOTIONAL STATES IN THE SELECTED PORTION OF

THE IEMOCAP DATABASE.

emotion happiness anger sadness neutral all

number 838 574 630 585 2627

TABLE II

THE PHONEME TO VISEME MAPPING TABLE ADAPTED FROM LUCEY ET

AL. [17]. THE COLUMN # CONTAINS THE NUMBER OF INSTANCES OF

THE PHONEMES IN THE SELECTED PORTION OF IEMOCAP CORPUS.

# Phoneme Viseme # Phoneme Viseme
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This study considers phoneme as the basic lexical unit.
However, in facial expressions a group of phonemes may
yield similar lip and mouth appearance. To avoid this redun-
dancy, studies often consider visemes, which define the par-
ticular orofacial appearance characterizing a set of phonemes.
This study adapts the phoneme-to-viseme mapping table
proposed by Lucey et al. [17] to build the emotional models
(Table II). Notice that only 13 non-silence visemes are
considered for the evaluations. Table II also reports the
number of instances of the corresponding phonemes in the
selected portion of the corpus.

IV. LEXICAL VARIABILITY COMPENSATION METHODS

This section describes the proposed lexical compensation
methods at the feature and model levels. The trajectory model
for facial features is the basis of the feature level compen-
sation scheme. The model level compensation scheme relies
on separate classifiers for each viseme.

A. Feature Level Lexical Compensation

Our previous study considered the ten most frequent sylla-
bles and words as the lexical units for the analysis [6]. Given
the large number of different syllables and words, this study
implements the lexical normalization at the phoneme/viseme
level. A drawback of using shorter units is that they are
more susceptible to coarticulation effects (transition between
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Fig. 3. The trajectory model of viseme /aa/, for the middle marker on the
chin (see Figure 2(b)), in Y direction (i.e., up-down).

phonemes). From a practical perspective, however, the re-
duced number of visemes facilitates the training of robust
viseme models.

The proposed trajectory model captures the distribution
of the temporal shape of facial features. The models are
created by temporally aligning facial features across many
instances conveying the same lexical content (in this study,
the same viseme). Due to the variable length of the visemes,
an interpolation and resampling method is used to align all
the instances. After this process, every sample is represented
with an N -dimensional vector reflecting the temporal shape
of the features. The average temporal shape of a marker m is
given by an N × 1 vector, referred to as the mean trajectory
(µm). The deviations around this mean trajectory is modeled
with an N × N covariance matrix (Σm). N is empirically
set to ten, since our preliminary evaluations showed no
significant improvement by increasing its value. Therefore,
the trajectory model for feature m is characterized by µm

and Σm. Figure 3 depicts the emotion dependent trajectory
models, across all speakers, for the viseme /aa/, for the
marker on the middle of the chin (highlighted in Figure 2(b)),
in the Y direction (i.e., up-down). The solid lines are the
mean trajectory vectors. The dashed lines give the standard
deviation around the mean trajectory. This figure shows the
existence of the lexical pattern. This figure also demonstrates
the effect of emotions on the captured trajectory models.

The feature level compensation scheme leverages the
viseme-dependent trajectory models to normalize the first
and second order statistics of the trajectories across visemes.
The normalization uses the whitening transformation [18] to
achieve a unified zero mean random vector with the identity
as the covariance matrix (i.e., whitened trajectory). For each
viseme vi with trajectory parameters µi and Σi, Equation
2 performs this normalization. xN×1 is an instance of the
viseme vi. The matrix Vi contains the eigenvectors of Σi

and Di is a diagonal matrix with the corresponding eigen-
values of Σi on the diagonal. Following the normalization
schemes proposed in previous studies [19], [20], only the
neutral utterances in the database are used to estimate the
transformation parameters (i.e., µi, Vi and Di). Therefore,
the normalization yields similar statistics across the neutral
samples of all visemes. Deviation from these neutral statistics
unfolds the presence of emotional variations. Therefore,
given the normalized visemes, a single model is built to
perform the emotion classifications.

xw = D
−

1

2

i V ′

i (x− µi) (2)

B. Model Level Lexical Variability Compensation

The model level compensation method consists in using
viseme labels to build the emotional classifiers. For each
viseme, a separate model is built to classify the emotions.
An important drawback of this approach is that the amount of
training data per lexicon-dependent classifier is significantly
reduced. The classification problem is split into 13 differ-
ent classification problems in which each classifier is only
trained with samples corresponding to the given viseme.

V. EXPERIMENT RESULTS

This section evaluates the proposed methods with emo-
tion recognition experiments. First, we present classification
results at the viseme level. We approximate the emotional
level of each viseme with the emotional label assigned to the
entire sentence. Then, we combine the viseme level scores
to derive utterance level labels.

Since the number of samples across emotional classes
are unbalanced (see Table I), the results are presented in
terms of accuracy (A), average recall (R), average precision

(P) and F-score (F). The emotion recognition experiments
are carried out using 10-fold leave-one-speaker-out cross
validation scheme. While the middle and upper face regions
provide emotional information, we are interested in the
orofacial area, which is more affected by the lexical content.
Therefore, following the findings from our previous work [6],
summarized in Section II-B, the experiments only consider
the markers around the mouth and lips (see highlighted
region in Figure 2(a)). This set include 15 markers.

A. Viseme Level Emotion Recognition

For a given viseme, a set of statistics are extracted per each
marker and its directions. These statistics include minimum,
maximum, mean, standard deviation, median, lower quartile
and upper quartile. Given the short duration of visemes, we
do not consider other high order statistics that require many
samples to achieve reliable estimations (e.g., kurtosis). For
the classifiers we use linear kernel support vector machine

(SVM), which has been commonly used in emotion recog-
nition problems. The models are trained with the sequential

minimal optimization (SMO) implementation of the WEKA
machine learning package [21]. According to preliminary
experiments, the complexity parameter of the SVM, c, yields
the highest performance across all the settings when set to
c = 0.1. Therefore, this value is used in all the classification
experiments.

Table III gives the viseme level emotion recognition
results. By incorporating the feature and model level lex-
ical compensation methods, the accuracy increases 1.55%
(relatively 3.34%) and 2.73% (relatively 5.9%), respectively,
over the lexicon-independent emotion classifier (baseline).
Similarly, the average precision, average recall and F-score
also improve with the proposed compensation methods. Ac-
cording to the proportion hypothesis tests, the performance
improvement for both approaches are statistically significant
(p− value < 0.0001). Notice that the model level technique



TABLE III

VISEME LEVEL EMOTION RECOGNITION RESULTS WITH AND WITHOUT

INCORPORATING THE LEXICAL CONTENT. A: ACCURACY, P: AVERAGE

PERCISION, R: AVERAGE RECALL, F: F-SCORE.

lexical compensation A P R F

no compensation 46.34 43.74 43.99 43.86
feature level 47.89 44.74 44.86 44.80
model level 49.07 46.13 46.32 46.22

gives better performance, over the feature normalization
approach.

Figure 4 gives the accuracies and F-scores of the classifi-
cation experiments per viseme, for lexical-independent and
lexical-dependent approaches. The order of the viseme in
the figures are sorted based on the number of instances in
the corpus (/t/ is the most frequent viseme – see Table II). In
most of the cases both compensation methods outperform the
lexical-independent approach. However, when the number of
instances of the visemes is low, the performance of lexical-
dependent approaches drops (e.g., viseme /er/), which is
expected. Given the reduce number of instances, however,
their contribution to the overall performance is also reduced.

B. Utterance Level Emotion Recognition

To obtain an utterance level emotion label, the sequence
of recognized emotions at the viseme level are combined
with three fusion methods: majority vote, product rule and
sum rule. The majority vote rule selects the most popular
label given by the viseme level classifiers. The other two
approaches take advantage of the posterior probabilities pro-
vided by WEKA. These two approaches choose the emotion
that maximizes the sum and product of the probabilities of
the corresponding class, respectively. Notice that both rules
assume that the classification results for different visemes
are independent. Table IV presents the fusion results. In
all settings, the sum rule outperforms the other two fusion
methods. The accuracy improvements for feature level and
model level schemes are 3.71% (relatively 7.1%) and 5.82%
(relatively 11.01%), respectively. Likewise, all the other
performance metrics consistently improve, compared to the
baseline. The proportion hypothesis test indicates that the
improvement achieved by either of the compensation meth-
ods is statistically significant (p − value < 0.02). Similar
to the viseme level results, the sentence level accuracies are
higher for the model level approach.

VI. DISCUSSION AND CONCLUSIONS

This study introduced the idea of compensating the lexical
variability to improve the performance of a facial emotion
recognition system. A feature and a model level methods are
proposed to implement this idea. The feature level approach
employs the whitening transformation to unify the distribu-
tions across different visemes. The model level approach
builds visemes-dependent classifiers. Both methods yield
statistically significant performance improvement for viseme
and utterance level emotion recognition problems. The eval-
uations show that the model level approach outperforms the
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Fig. 4. Performance of the emotion recognitions per each viseme, by
lexical-independent and lexical-dependent approaches. (a) Accuracy (b) F-
score

TABLE IV

UTTERANCE LEVEL EMOTION RECOGNITION RESULTS BY FUSING THE

VIESEME LEVEL RECOGNITIONS. A: ACCURACY, P: AVERAGE

PERCISION, R: AVERAGE RECALL, F: F-SCORE.

lexical compensation fusion A P R F

no compensation
majority 51.82 49.58 50.42 50.00
sum 52.55 50.39 51.30 50.84
product 51.55 49.35 50.27 49.81

feature level
majority 55.42 52.63 53.62 53.12
sum 56.26 53.58 54.76 54.16
product 55.57 52.83 53.94 53.38

model level
majority 57.41 54.77 56.22 55.49
sum 58.37 55.96 57.38 56.66
product 57.60 55.03 56.30 55.66



feature level normalization scheme. We are exploring model
adaptation approaches to overcome the limited number of
samples in the training imposed by the proposed model level
compensation scheme.

Since the middle and upper face regions are less affected
by the speech production process, lexical-independent meth-
ods should be sufficient to extract emotion discriminative
information. We are designing experiments to validate this
claim. We expect that fusing the lexical-independent models
for the middle and upper face regions with the proposed
lexical-dependent techniques for the lower face region will
increase the performance and robustness of the facial emo-
tion recognition system.

This study assumes that the underlying lexical content is
known, which is valid for a number of applications (e.g.,
judicial recordings for which transcriptions are available).
In other cases, the compensation methods will have to rely
on automatic speech recognition (ASR) systems. We are
planning to explore the performance degradation of the
proposed approaches caused by recognition errors introduced
by ASRs. Likewise, we are considering generative models
that capture the relationship between lexical and emotional
contents during training, but do not require the underlying
transcription during testing.

In this study, the facial features are derived from mark-
ers placed on the actors’ face. For practical applications,
however, the features should be automatically extracted from
videos. In our future work, we will consider geometric-based
[22] and appearance-based [23] facial features. We will also
consider high level representations of facial muscle activity
such as action units (AUs) [24].
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