

MSP - CRSS

Analysis and Compensation of the Reaction Lag of Evaluators in Continuous Emotional Annotations

Soroosh Mariooryad and Carlos Busso

SAMSUNG

Multimodal Signal Processing (MSP) lab The University of Texas at Dallas

Sep 4, 2013

busso@utdallas.edu

Emotional Descriptors

- Emotional labels at sentence level
 - One descriptor assigned to a segment

sentence, turn, chunk, word

- Long segments: variations are not captured
- Continuous labels
 - Track emotional content continuously over time
 - They capture localized emotional behaviors
 - Facilitate emotion analysis at different resolutions

Continuous Emotional Labels

- Record position of a cursor controlled by user
- Examples of these GUIs:
 - FEELTRACE [Cowie et al. 2000] and Gtrace [Cowie et al., 2012]
 - MoodSwings [Kim et al., 2008] and EmuJoy [Nagel et al., 2007]

3

Discrete Classification Problem

Approach: estimate mean across evaluators

Thursday, September 5, 13

Motivation

- Emotional classification results in naturalistic
 database was very low SEMAINE [McKeown et al., 2012]
 - Challenging task spontaneous emotions

Evaluator Reaction Lag

Emotion assessment

 Sense the stimuli, appraise the emotional message, define their judgment, moving the cursor

Problem Formulation

• How to formulate the estimation of the reaction lag?

- Constant reaction lag or time-variant
- Annotator-dependent or annotator-independent
- Assumptions in this work

- Annotator-independent (mean across evaluators)
 - Preliminary results on annotator-dependent

Estimating Reaction Lag

Proposed approach based on mutual information (MI)

Capture the dependency between two random variables

Find the optimal reaction lag

$$\hat{\tau} = \arg_{\tau} \max I[EMO; ANN^{\tau}]$$

• EMO = emotional content of the stimulus

• ANN^{τ} = shift version of emotional annotation

 $\hat{\tau} = \arg_{\tau} \max I(EMO) ANN^{\tau}$

Estimation of Emotional Content

- EMO represented by facial features capturing the deviations from neutral behaviors (EMO^F)
- Why acoustic features are not included?
 - During silence, speech features are not available
 - Single frame does not convey enough emotion cues
- Distributions are estimated with k-means
 - $P(EMO^F)$
 - $P(ANN^{\tau})$
 - $P(ANN^{\tau}, EMO^{F})$

SEMAINE Database

Source: McKeown et al. (2012)

user

operator (stimulus)

- Emotionally colored interactions
- Annotations: FEELTRACE (activation, valence)
- 44 sessions, 9 unique speakers (users)
 - Sessions with annotations and correctly extracted facial features

Facial Features

Facial features extracted with CERT [Bartlett et al. 2006]

- Action Units from FACS (deviation from neutral faces)
- Head rotation (Jaw, Yaw and Pitch)

AU	Description	AU	Description
AU 1	Inner Brow Raise	AU 15	Lip Corner Depressor
AU 2	Outer Brow Raise	AU 17	Chin Raise
AU 4	Brow Lower	AU 18	Lip Pucker
AU 5	Eye Widen	AU 20	Lip stretch
AU 6	Cheek Raise	AU 23	Lip Tightener
AU 7	Lids Tight	AU 24	Lip Presser
AU 9	Nose Wrinkle	AU 25	Lips Part
AU 10	Lip Raise	AU 26	Jaw Drop
AU 12	Lip Corner Pull	AU 28	Lips Suck
<u>AU 14</u>	Dimpler	AU 45	Blink/Eye Closure
	Γ		

For EMO^F , we use $K \in \{2, 4, 6, 8, 10, 16, 20\}$ over the joint feature space

 $P(ANN^{\tau})$

Analysis of the Reaction Lag

Activation

Analysis of the Reaction Lag

Valence

Analysis of the Reaction Lag

[Activation, Valence]

456 samples

Activation

-1 ^l -1

0 Valence

593 samples

K = 3

K = 4

10

Experimental Setting

- The optimal delay is defined as the first time the mutual information does not increase
 - Priority to shorter reaction lag

Attributo	K=2		K=3		K=4		7-	activation valence activation-valence
Allibule	mean	std	mean	std	mean	std	6-	I I
Act	2.27	0.82	2.84	1.21	3.94	1.55	ر د (sec) 4	
Val	3.48	0.66	3.68	0.86	3.37	0.79	3-	
Act-Val	3.61	0.52	4.98	0.84	4.43	1.36	2-	
							- I-	2 3 4 K in K-means (number of clusters)
								UT D

Validation with Emotion Recognition

- I049 turns (at least 300ms long) 9 subjects
- SVM with 9-fold speaker independent cross-validation
- Evaluation settings
 - Activation, valence, and [activation, valence]
 - Discrete emotional labels with K=2, 3,4 classes
 - Reaction lag: 0, 1, 2 and 3 sec + optimal delay
- Facial features
 - [AUs+head] x 6 statistics (e.g., quantiles, mean and std)
- Acoustic features

Acoustic Features

openSMILE 4368 features [Eyben et al. 2010, Schuller et al. 2011]

•	Spectral	Rasta-style filtered auditory spectrum bands		
		MFCCs		
		Spectral energy 25-60Hz, Ik-4KHz		
		Spectral roll-off point 0.25 0.50 0.75 0.90		
		Spectral Flux, entropy, variance, skewness, kurtosis, slope		
•	Energy	Sum of auditory spectrum (loudness) Sum of Rasta-style filtered auditory spectrum RMS Energy Zero-Crossing Rate		
•	Voice	F0 Probability of voicing Jitter (local, delta) Shimmer		

Feature selection with CFS (~ 99 features)

busso@utdallas.edu

Recognition Experiments - Activation

2 lag (s)

2 lag (s)

0

0

0 1

1

1

3 Optimal

3 Optimal

2 3 Optimal lag (s)

Recognition Experiments - Valence

3 Optimal

Recognition Experiments - [Act,Val]

e. 60 S-H 55

S-H

F-Score

lag (s)

lag (s)

3 Optimal

3 Optimal

3 Optimal

Accuracy 52

Sorraciano de la construcción de

Accuracy

lag (s)

lag (s)

3 Optimal

3 Optimal

busso@utdallas.edu

 \mathbf{Y}

Thursday, September 5, 13

1 2 lag (s)

Recognition Experiments - [Act,Val]

Recognition Experiments - Average

- Across all settings
 - Act, Val, [Act-Val]
 - K = 2,3,4

 Optimal delay estimated from training set yields the best performance across all settings on the test set

Experiments – Pre-Aligning the Annotations

- Evaluator dependent lag
 - Assumption: phase between two annotators is fixed and is less than 1 sec
 - Pre-Aligning the labels of multiple annotator to maximize the correlation between them within [-1, 1] seconds
 - F-score improves 1.06% (face) and 0.26% (speech)

Conclusions

- The mutual information analysis unveils and quantifies the reaction lag with respect to facial features
- Compensating for the reaction lag improves the performance of both facial and vocal emotion recognition systems
 - Shift-delayed emotional annotations achieved statistically significant improvements

We are using the wrong labels!

Future Work

Reaction lag analysis with respect to speech features

Reaction lag analysis in evaluator-dependent fashion

Find optimum delay per annotation

- Considering time-variant reaction lag
 - Time warping methods e.g., dynamic probabilistic canonical correlation with time warping (DPCTW) [Nicolaou et al., 2012]

Multimodal Signal Processing (MSP)

Thanks!

Work funded by Samsung Telecommunications America and NSF

http://msp.utdallas.edu/

busso@utdallas.edu