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ABSTRACT

Emotion expression is an essential part of human interaction. Rich
emotional information is conveyed through the human face. In this
study, we analyze detailed motion-captured facial information of
ten speakers of both genders during emotional speech. We derive
compact facial representations using methods motivated by Principal
Component Analysis and speaker face normalization. Moreover, we
model emotional facial movements by conditioning on knowledge of
speech-related movements (articulation). We achieve average clas-
si cation accuracies on the order of 75% for happiness, 50-60% for
anger and sadness and 35% for neutrality in speaker independent
experiments. We also nd that dynamic modeling and the use of
viseme information improves recognition accuracy for anger, happi-
ness and sadness, as well as for the overall unweighted performance.

Index Terms— Emotion recognition, Principal Component
Analysis, Principal Feature Analysis, Fisher Criterion, visemes

1. INTRODUCTION

During emotional speech, the face conveys rich and diverse infor-
mation. Facial gestures are affected by several factors, including the
underlying articulatory speech production and the emotional state of
the subject. The speci c goal of this study is to investigate the role
of static and dynamic information conveyed by the face during emo-
tional speech particularly from the perspective of automatic recogni-
tion. Our focus is two fold; rst, we compute compact facial repre-
sentations which preserve the useful information of the facial shape
and movements in terms of emotion recognition performance. Sec-
ond, we model and recognize emotions by conditioning on knowl-
edge of speech-related lip movements (visemes), which occur in par-
allel. The use of direct facial marker data enables us to overcome
some of the present challenges in feature processing from video data,
and focus on establishing feasibility bounds for emotion classi ca-
tion using visual features. The insights gained from emotional face
analysis could be applied to improve automatic emotion recognition
and create more natural human-computer interfaces. This is increas-
ingly relevant given the widespread use of cameras, incorporated in
laptops and other portable devices that enables the use of facial cues
for processing and recognition.

We use facial information obtained from multiple markers
across the face. This information is redundant; neighboring markers
tend to be highly correlated because they are controlled by the same
underlying muscle movements. Moreover, the human face has a
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speci c con guration and the possible range of physical movement
of each facial marker is limited. Dealing with this redundancy in
data becomes especially important in view of their use for pattern
classi cation applications. We apply Principal Component Anal-
ysis (PCA) for dimensionality reduction, which is a widely used
technique with various applications, including eigenface analysis
for computer vision [1],[2]. Alternatively, we select face markers
using either Principal Feature Selection (PFA), a recently proposed
technique motivated by PCA [3], or we apply Fisher Criterion in
order to select features that better discriminate between different
emotional classes [4].

In order to constrain the speech-related variability of facial
movement we use the concept of viseme, which represents the lip
shape during the articulation of a phoneme. Visemes are widely
used for speech analysis [5], audio-visual recognition of speech,
especially under noisy conditions [6] and animation [7]. In [8]
authors use averaging in order to smooth the speech-related face
movements. In contrast, we incorporate those movements in our
analysis by modeling the evolution of emotional visemes. Dynamic
modeling of information streams using HMMs has been shown to
be a powerful method for audiovisual recognition [9].

In the presented work we use a multispeaker database and per-
form speaker independent cross validations. Facial features result-
ing from averaged, decorrelated and normalized marker information
(PFA features) achieve good performance. Happiness is the most
well-recognized emotion using facial cues, with a recognition per-
formance on the order of 75%, in leave-one-speaker-out cross vali-
dation experiments. Anger and happiness have performance on the
order of 50-60% while neutrality has performance on the order of
35%. We nd that emotion recognition accuracy is highly speaker-
dependent. Also, the lower face seems to convey more information
compared to the upper face. Explicitly modeling articulation move-
ments improves recognition for anger, happiness and neutrality but
decreases performance for sadness.

2. METHODOLOGY

2.1. Database

We use the Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) database [10]. This database contains approximately 12 hours
of audiovisual data from ve mixed gender pairs of actors, male and
female. IEMOCAP contains detailed facial information obtained
from motion capture as well as video, audio and transcripts of each
session. In comparison to other acted emotion databases where ac-
tors are asked to read out sentences displaying a speci c emotion,
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in IEMOCAP two techniques of actor training are used in order to
elicit emotional displays; scripts and improvisation of hypothetical
scenarios. The sessions are approximately 5 minutes in length. Dur-
ing these sessions actors displayed various emotions according to the
content of the session and the course of the interaction. The sessions
were later manually segmented into utterances and annotated into
categorical (anger, happiness, neutrality, etc) and dimensional tags
(valence, activation, dominance).

In this study, we use the facial motion capture data as well as
the transcripts, from all 10 speakers in the corpus. We examine
classes of anger, happiness, excitation, neutrality and sadness. We
have merged classes of happiness and excitation into a single class
which we will refer to as happiness. All utterances examined have
been tagged by at least three annotators across which there is major-
ity consensus regarding the emotional tag.

2.2. Feature Extraction

The IEMOCAP data contain detailed facial marker coordinates from
the actors during their emotional interaction. The positions of the
facial markers can be seen in gure 1(a). The markers were normal-
ized for head rotation and translation. The nose marker is de ned
as the local coordinate center of each frame. The ve nose markers
were excluded because of their limited movement. In total, infor-
mation from 46 facial markers is used, the (x,y,z) coordinates. This
results in a 138-dimensional facial representation, which tends to be
redundant because it does not exploit the correlations of neighboring
marker movements and the structure of the human face. We examine
various feature extraction approaches in order to nd compact facial
representations well suited for emotion recognition applications in
terms of recognition accuracy.

2.2.1. Speaker Face Normalization

When we examine various speakers it is important to smooth out in-
dividual speaker face characteristics that are not related to emotion.
Our speaker normalization approach consists of nding a mapping
from the individual average face to the general average face. This
is achieved by shifting the mean value of each marker coordinate
of each speaker to the mean value of that marker coordinate across
all speakers. Speci cally, for each speaker we compute the mean
of each face feature (marker coordinate) across all emotions, mij ,
where i is the speaker index and j is feature index. Also, we com-
pute the mean of each feature across all speakers and all emotions,
Mj , where j is the marker coordinate index. Each feature is then
normalized by multiplying it with the coef cient ci,j =

Mj

mij
.

2.2.2. Principal Component Analysis

PCA is a widely used dimensionality reduction method that nds
the projection of data into a lower dimensional linear space such that
the variance of the projected data is maximized. The application of
PCA in this paper is motivated by the technique of eigenfaces [1]. In
eigenfaces, a feature vector is constructed by facial image pixel val-
ues. PCA nds the principal faces, which can be linearly combined
to reconstruct any face. Similarly, in our approach the feature vector
consists of the facial marker coordinates, and the principal projec-
tions can be interpreted as the directions of facial movement along
which the variance is maximum.

In our analysis, we perform PCA and then reconstruct the face
from the rst 30 principal components (because they encode more

than 95% of the total variance). In an attempt to interpret those prin-
cipal components, we change the value of each component in the
low-dimensional domain and observe the change in the facial marker
domain. For instance in gures 1(b),(c) and (d), we can see a neutral
con guration of the face of a female speaker, reconstructed from the
30 rst PCA projections, and the face appearance when we decrease
and increase the second projection coef cient, keeping all other co-
ef cients constant. The resulting movement roughly corresponds to
the facial con guration of a smile. A second example is provided in
gures 1(e) and (f) when, respectively, decreasing and increasing the
17th projection coef cient results in the up and down movement of
the right eyebrow. In general, some projections correspond to recog-
nizable directions of facial movement, affecting either the lower or
the upper facial parts or both.

We use the rst 30 PCA projections for ef cient description of
the face, since they convey more than 95% of the total data variance.
The PCA transformation matrix is computed using data from all
available speakers, therefore individual speaker characteristics are
indirectly taken into accout. We nd that speaker normalization, ei-
ther prior or after the PCA transformation, does not improve recog-
nition performance, therefore we do not normalize. The window
used for feature extraction is 25msec with overlap of about 16msec.
The choice of a short window enables further dynamic modeling of
the visemes (since the average phoneme lasts about 100msec). We
append the rst derivatives to the feature vector resulting in a 60-dim
facial representation.

2.2.3. Principal Feature Selection

The PCA transformation space is a linear combination of the ini-
tial space of face marker coordinates, with no inherent intuitive in-
terpretation. Although, it is sometimes possible to interpret these
projections as directions of speci c face gestures and movements,
generally it is dif cult to nd a meaning behind each projection. In
order to nd more meaningful facial representations we use Pricipal
Feature Analysis [3]. This method computes the PCA transforma-
tion matrix as a rst step and uses this matrix to cluster together
facial marker coordinates that are highly correlated. Then it selects
a representative feature from each cluster, thus performing feature
selection while using similar criteria as PCA.

We nd experimentally that it is bene cial to perform some ad-
hoc averaging of neighboring facial markers prior to applying PFA.
That way, highly correlated markers are averaged and the face mark-
ers are reduced from 46 to 28. Then we perform PFA, which se-
lects the least correlated averaged marker coordinates, and nally
we normalize the selected coordinates. The position of the marker
coordinates is affected by the facial con guration of each speaker.
Normalization is important in order to smooth out individual face
characteristics which are unrelated to emotion and focus on emo-
tional modulations. We select 30 features for similar reasons as the
PCA features (PCA transformation explains more that 95% of total
data variability). We use the same window and we append the rst
derivatives to the feature vector resulting in a 60-dim facial repre-
sentation.

An analysis of the PFA process, shows that the facial features
are clustered together in a meaningful way. For example same co-
ordinates of neighboring or mirroring markers (e.g., left and right
cheek) are clustered together. When repeating PFA 100 times,
we nd that on average 28% x-coordinates, 39% y-coordinates
and 33% z-coordinates are selected, showing that all 3 coordi-
nates have important variability in emotional speech. The com-
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(a) Face markers
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60 40 20 0 20 40 60

40

20

0

20

40

60

80

(d) After increasing
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(f) After increasing
projection 17

Fig. 1. Facial marker positions and marker position reconstruction using the rst 30 PCA projections (data from speaker 1, female)

paratively high percentage of y-coordinates selected is expected
because of the jaw movements in the vertical direction. Indeed,
on average 22% of the selected y-coordinates come from mouth
markers while only 14% of the initial markers are placed around
the mouth. Selection of z-coordinates can be attributed to lip
protrusion during articulation. The distribution of initial markers
across the face regions is (chin,mouth,cheeks,eyebrows,forehead)
= (11%,14%,28%,36%,11%) while the distribution of the selected
markers is (13%,23%,25%,31%,8%). This indicates a bias towards
selecting lower face marker coordinates (especially mouth), which
is expected since the movement of the jaw conveys a great amount
of the variability. This is an encouraging result since the mouth can
be automatically tracked more reliably than other face regions like
cheeks and forehead.

2.2.4. Feature Selection using Fisher Criterion

The previously described features have been selected so as to cap-
ture maximal data variability. However, those features do not nec-
essarily separate the different emotion classes well. We also extract
a set of features using the Fisher criterion, which maximizes the be-
tween class variability and minimizes the within class variability [4].
For those features we rst perform ad-hoc averaging of neighboring
markers to reduce from 46 to 28, then perform speaker face normal-
ization and nally we select the 30 best marker coordinates accord-
ing to the Fisher criterion. The Fisher criterion value of each feature
is computed on the train set, where the emotion classes are known.
In each fold the Fisher criterion values are slightly different, so the
features that are selected in different folds may vary slightly. The
choice of 30 is ad-hoc so that this feature set is comparable with the
previous two. Again, we append the rst derivatives to the feature
vector resulting in a 60-dim facial representation. From the selected
features, across the 10 folds, on average 29% are x, 34% are y and
37% are z coordinates. Also, on average, 34% of the markers come
from upper face (eyebrows and forehead) and 66% come from lower
face. In general, we observe similar tendencies with PFA concerning
the feature selection.

2.3. Viseme Information

A viseme speci es the lip shape during the articulation of a phoneme.
The purpose of conditioning on visemes, is to constrain the variabil-
ity related to speech, in order to better recognize the underlying
emotion. Besides incorporating speech-related information, visemes
provide a reasonable time unit for HMM training, if we want to
dynamically model facial movement. The phoneme to viseme
mappings are many to one, and various such mappings exist in the
literature depending on the desired detail. Here we used the mapping
presented in [6] and [11], in which the authors used 14 visemes. The

phoneme to viseme mapping that we used is summarized in Table
1. For each utterance we have the word transcription and through
forced alignment we obtain the phoneme-level transcription. We
use this transcription to group facial data that correspond to each
viseme.

Table 1. Phoneme to viseme mapping.
Visemes Phonemes Visemes Phonemes
v1 P,B,M v8 AE,AW,EH,EY
v2 F,V v9 AH,AX,AY
v3 T,D,S,Z,TH,DH,CH,SH,ZH v10 AA
v4 W,R v11 AXR,ER
v5 CH,SH,ZH v12 AO,OW,OW
v6 K,G,N,L,HH,NG,Y v13 UH,UW
v7 IY,IH, IX v14 SIL

3. EMOTION RECOGNITION EXPERIMENTS
3.1. Experimental Setup

We organize our emotion recognition experiments using a 10-fold
leave-one-speaker-out cross validation. The mean and standard de-
viation of the number of test utterances across the folds is 59 ± 28

angry, 79 ± 25 happy, 56 ± 22 neutral and 62 ± 23 sad utterances.
The presented recognition results are the speaker-independent aver-
ages over the 10 folds. For each of the feature sets, we examine
whether explicitly modeling the visemes is bene cial. We train a
static GMM for each emotion (no viseme information), a GMM for
each emotional viseme in order to model viseme information and
an HMM for each emotional viseme in order to model both viseme
information and its dynamic evolution. For model training we use
the HTK Toolkit [12]. For each model we try various number of
mixtures, ranging from 4 to 32, and report the best performance.
The results are per utterance and majority rule is used to obtain the
utterance-level decision.

3.2. Results

In Table 2 we present the emotion classi cation percentages per ut-
terance, using the PCA, PFA and Fisher selection features. For each
emotion, we report the mean of the 10-fold cross validation. We
also report the mean and standard deviation of the total unweighted
performance (%UW). The parentheses next to each model name in-
dicate the number of gaussian mixtures used. In Table 3 we present
the detailed classi cation performance of our best performing clas-
si er (HMM with normalized PFA features) per speaker.

4. DISCUSSION

Emotion recognition peformance follows similar trends across all
feature sets. Speci cally, happiness seems to be well trasmitted
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Table 2. Emotion Classi cation Percentages per utterance, using
PCA, PFA and Fisher features. The mean classi cation percentage
is computed over 10 leave-one-speaker-out cross validations.

PCA %ANG %HAP %NEU %SAD %UW
GMM(8) 35.42 72.10 25.06 64.34 49.23± 7.17

viseme-GMM(8) 52.70 73.67 33.27 44.85 51.12± 5.30
viseme-HMM(4) 57.59 76.70 23.13 52.67 52.52± 4.82

PFA %ANG %HAP %NEU %SAD %UW
GMM(16) 47.03 73.37 36.55 58.35 53.83± 6.09

viseme-GMM(16) 58.44 71.71 37.22 49.28 54.16± 6.24
viseme-HMM(16) 57.52 76.98 34.79 53.68 55.74± 5.26

Fisher %ANG %HAP %NEU %SAD %UW
GMM(8) 49.87 72.82 27.35 55.27 51.33± 7.23

viseme-GMM(8) 62.78 73.76 29.57 42.62 52.18± 7.05
viseme-HMM(8) 62.92 75.97 27.65 46.46 53.25± 8.30

Table 3. Detailed Emotion Classi cation Percentages per speaker,
using normalized PFA features and HMMs trained on emotional
visemes
HMM(16)-PFA %ANG %HAP %NEU %SAD %UW
sp1 (female) 34.72 75.00 71.21 40.48 55.35
sp2 (male) 61.54 72.97 21.05 52.05 51.90
sp3 (female) 71.43 80.26 15.38 26.67 48.44
sp4 (male) 55.00 67.37 17.14 83.61 55.78
sp5 (female) 73.68 95.83 18.87 18.63 51.75
sp6 (male) 75.27 75.61 25.29 59.09 58.81
sp7 (female) 57.76 85.71 50.00 45.16 59.66
sp8 (male) 33.85 61.02 31.43 78.38 51.17
sp9 (female) 30.00 97.62 48.61 89.33 66.39
sp10 (male) 82.00 58.39 48.94 43.40 58.18

by the face since we achieve an average recognition performance
around 75%. This result agrees with our intuition that the face can
portray obvious expressions of happiness, e.g., through a smile. Our
worst performance is for neutrality, which ranges from 25% (chance)
to around 36% depending on the feature set. This may be due to the
wide variability in the de nition of neutrality. Finally, for anger and
sadness we achieve performance on the order of 50-60% depending
on the feature set. Overall, the PFA features are the best performing
both in terms of total unweighted performance and neutral classi -
cation, while Fisher features perform slightly worse. This suggests
that by selecting decorrelated marker features that represent maxi-
mal data variance, we essentially keep most of the emotion related
information.

We observe similar trends across all feature sets, when modeling
face at the viseme level. Using viseme information works well for
anger and happiness. This may happen because these are emotions
with high activation and high facial movement variability; thus con-
straining some of the variability that is related to speech seems to
improve emotion recognition. Viseme modeling decreases recogni-
tion accuracies for sadness and slighly improves recognition of the
neutral state. In Table 3, we observe large differences in recognition
of various classes between speakers, which suggests that emotion
expression is highly speaker dependent. Finally, total unweighted
performance improves, across all feature sets, when conditioning on
visemes. Constraining on visemes usually helps to reduce some of
the speaker variability, as it is indicated by the decrease in the stan-
dard deviation of the total unweighted recognition performance (Ta-
ble 2).

Finally, the database that we examine contains emotional expres-
sions that are not caricatures but have been elicited so as to resemble
natural emotional expression. Also, it is a multimodal database; an-
notators tagged each utterance taking into account not only the visual

information, but also audio, content and context information. This
means that there may be mismatches between the multimodal pre-
sentation of emotion and the emotional expression contained in the
face alone. For example, one display of sarcasm consists of an angry
voice and happy-looking face. Humans usually recognize the over-
all emotion as anger, however a model trained only on face data will
most probably detect happiness. Such issues limit the performance
of individual modality emotion classi cation and can be resolved by
combining information from multiple modalities in our analysis.

5. CONCLUSION AND FUTUREWORK

In this work, we used a large, multi-speaker emotional database for
the challenging speaker-independent emotion classi cation task. We
examined a variety of facial representations and found that the use
of averaged, decorrelated and normalized marker information leads
to average accuracies on the order to 75% for happiness, 50-60% for
anger and sadness and 35% for neutrality. We also found that ex-
plicitly modeling articulation movements improves recognition per-
formace for anger and happiness and increases the overall total un-
weighted performance.

There are many potential directions for future work. One im-
mediate step is to include multiple modalities in order to improve
emotion recognition performance. The dynamic statistical modeling
of multiple modalities and their effective fusion is an interesting and
challenging problem. Concerning the use of PCA to nd directions
of facial movement, we could use the low dimensional PCA space
to effectively reconstruct the face and control facial gestures. Ma-
nipulating the PCA projections has the advantage of causing more
smooth and natural facial movements than just moving each marker
separately. Therefore, those projections could be applied for realistic
emotional speech animation.
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