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Motivation
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• Emotion recognition 

systems can be trained 

to 
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• Classify discrete 

categories such as 

Happy, Neutral, Angry 

etc.

• Classify or predict values of 

emotional attributes such 

as 

• Arousal (passive vs active)

• Valence (positive vs 

negative)
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Motivation
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• Humans are better at relative 

comparisons than absolute 

values

• Rank emotional attributes rather 

than absolute 

classification/regression

• Appealing for Emotional 

Retrieval tasks

• Rank order aggressive behavior

• Retrieve target behaviors with 

given emotions
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Related Work

• Rankers for categorical emotions (e.g. 

angry rankers) [Cao et al. 2012, 2014]

• Pairs formed between preferred emotion 

and other emotion

• Preference learning methods were used 

to learn from continuous ratings [Martinez 

et al. 2014] 

• Alternative framework to study trends 

where raters agreed [Parthasarathy et al. 2016]

4

Which is 

angrier

• Commonly formulated as comparisons between pairs of 

samples
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Contributions

• We rank order emotional attribute

• None of the previous studies have focused on using 

neural net learning techniques for preference 

learning 

• We utilize a neural network framework for 

preference learning – RankNet

• To our knowledge, this is the first study that uses 

neural networks for ranking emotional attributes

5
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RankNet
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𝜱

𝑓(𝜱)

• Given: samples 𝑖, 𝑗, with 

features 𝜱𝒊, 𝜱𝒋

• Goal: Find 𝑓 that learns the 

probability, P𝑖𝑗, that 𝑖 ≫ 𝑗

• Neural network learns the 

function 𝑓, which maps 

feature vector 𝜱, to 𝑓(𝜱)

• Probabilistic framework 

• P𝑖𝑗 ≡ 1

1+𝑒−σ(𝑓(𝜱𝒊)−𝑓(𝜱𝒋))

𝑓(𝜱𝒊) − 𝑓(𝜱𝒋)

P𝑖𝑗Sigmoid
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• Cross entropy is then used as the cost function to 

measure deviation of model 
𝐶 = −P𝑖𝑗𝑙𝑜𝑔 P𝑖𝑗 − 1 − P𝑖𝑗 𝑙𝑜𝑔 1 − P𝑖𝑗

• Simplifies to

• 𝐶 = 𝑙𝑜𝑔 1 + 𝑒−σ(𝑓(𝜱𝒊)−𝑓(𝜱𝒋)) when P𝑖𝑗 = 1 

• 𝐶 = 𝑙𝑜𝑔 1 + 𝑒−σ(𝑓(𝜱𝒋)−𝑓(𝜱𝒊)) when P𝑖𝑗 = 0

RankNet

• Ideal probabilities P𝑖𝑗 is set according to the 
preference in pairs of samples. 

• P𝑖𝑗 = 0 if 𝑗 ≫ 𝑖

• P𝑖𝑗 = 1 if 𝑖 ≫ 𝑗

7
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RankNet Framework

• Features of pairs of 

samples are fed at the input

• Train two identical neural 

networks that share all 

parameters
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Feedforward

DNN

Feedforward

DNN

𝜱𝒊 𝜱𝒋

𝑊

P𝑖𝑗

𝐶

• The neural network for RankNet can be modeled with a 

Siamese architecture
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Baselines

• Given: 𝑖 ≫ 𝑗 goal is to

min
𝑤,ξ

1

2
𝑤 2 + 𝐶 

𝑖,𝑗

ξ𝑖,𝑗

𝑠. 𝑡 𝑤, 𝜱𝒊−𝜱𝒋 ≥ 1 − ξ𝑖,𝑗 𝑎𝑛𝑑 ξ𝑖,𝑗 ≥ 0
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• RankSVM framework for recognizing emotional 

attributes [Lotfian & Busso 2016]

• Reduced to binary classification with 𝜱𝒊−𝜱𝒋
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Differences
• RankSVM

• Input is restricted to difference between features 𝜱𝒊−𝜱𝒋

• Large margin classifier

• Redundant data can be removed

• Performance does not increase with data [Lotfian & 

Busso 2016] 

• Kernel methods for non-linear classification

10

• RankNet

• Features 𝜱 individually fed with no restrictions

• Learns a non-linear mapping 𝑓(𝜱)

• Optimized for pairs of samples

• Highly data and parameter dependent

𝜱𝒊 𝜱𝒋

𝜱𝒊−𝜱𝒋

SVM

DNN

P𝑖𝑗 ≡
1

1 + 𝑒−σ(𝑓(𝜱𝒊)−𝑓(𝜱𝒋))
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Baselines

• DNNRegression: 

Regression using DNNs

• No relative 

comparisons

• Use scores, g(𝜱) to 

rank order sentences

11

𝜱

g(𝜱)
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Databases

• Train: USC-IEMOCAP 

• 12 hours of conversational recordings from 10 actors in 
dyadic sessions

• Sessions consists of emotional scripts as well as 
improvised interactions

• All speaking turns annotated for emotional attributes by 
two raters on a scale of 1-5

• Arousal, Valence and Dominance

• Test: MSP-IMPROV 

• Improvisation between actors (12 actors)

• Contains 8,438 speaking turns 

• Annotated by novel crowdsourcing methods on a scale 
of 1-5 by at least 5 raters

• Arousal, Valence and Dominance

12

MSP-IMPROV 

IEMOCAP
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Experimental Settings
• Acoustic Features

• Geneva Minimalistic Acoustic Parameter Set [Eyben et al. 2016]

• Minimalistic features selected based on their performance in 
previous studies

• Extended set – 88 features

• Reproducibility (no feature selection)

• Theoretical significance

• All DNN architectures include

• 2 hidden layer, feed forward architecture 256 nodes each

• Sigmoidal activation function

• Stochastic Gradient Descent, learning rate of 10−4 for 100 
epochs

13
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• Relative labels: consider samples 
separated by margin 𝑡

• 𝑆1𝑎𝑟𝑜𝑢𝑠𝑎𝑙 − 𝑆2𝑎𝑟𝑜𝑢𝑠𝑎𝑙 > 𝑡
• Tradeoff between 𝑡 and data size

• 𝑡  reliability  data 

• RankSVM: 𝑡 = 1.0 for arousal 
and dominance 𝑡 = 0.9 for 
valence[Lotfian & Busso 2016]

• For RankNet we study the 
performance for 𝑡 ∈ {0,1,2,3}

• Regression has no relative 
scores

Experimental Settings
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Evaluation

• Precision at 𝑘 (𝑃@𝑘)

• Measures the precision at retrieving 

𝑘% of the samples from top and 

bottom
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• Ground truth is split into high and low 

classes about the median 

• Evaluate success in retrieving samples 

on the correct side of the split
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Effect of Margin on RankNet
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• Attributes annotated 

on scale of 1-5

• P@10, P@20, P@30

• We see improvement 

for 𝑡 = 1,2 but 

decrease 𝑡 = 3.

• Use 𝑡 = 2 for RankNet



msp.utdallas.edu

Comparisons
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RankSVM RankNet DNNRegression

Arosual

P@10 85.77 88.02 87.54

P@20 80.81 83.93* 83.72*

P@30 77.15 79.32* 79.02*

Valence

P@10 63.46 71.29* 69.28*

P@20 59.79 64.77* 63.76*

P@30 57.26 61.66* 61.13*

Dominance

P@10 76.79 86.15* 84.67*

P@20 73.97 79.94* 79.61*

P@30 70.95 75.65* 75.33*

*
Denotes Statistical Significance over RankSVM (population proportion)
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Results

• Kendall’s Tau 
Coefficient 𝜏

• Correlation 
between the two 
ordered lists [-1,1]
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RankSVM RankNet DNNRegression

Arousal 0.36 0.41* 0.41*

Valence 0.08 0.14* 0.13*

Dominance 0.28 0.35* 0.34*

• RankNet and DNNRegression outperform RankSVM

in all cases for 𝑃@𝑘 and Kendall’s 𝜏

• Kendall’s 𝜏 values are better than those reported in 

previous studies

• 𝜏 values ≈ 0.02 for Arousal, 0.05 valence[Martinez et al. 2014]
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Conclusions

• Benefits of using deep neural network architectures for 

ranking emotional attributes

• Cross – corpora evaluations show that RankNet

algorithms outperform RankSVM algorithms for 𝑃@𝑘, 𝜏

• Future Work

• Use of other architectures (RNN-LSTMs) for preference 

learning to outperform DNNRegression

• Ranking for emotional classes

• Role of training data size in performance

• Will we see better performance with increase in data size?

19



msp.utdallas.edu

Thanks for your attention!

Questions?


