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Abstract—Studies have shown that emotional variability in
speech degrades the performance of speaker recognition tasks.
Of particular interest is the error produced due to mismatch
between training speaker recognition models with neutral
speech and testing them with expressive speech. While pre-
vious studies have considered categorical emotions, expressive
speech during human interaction conveys subtle behaviors
that are better characterized with continuous descriptors (e.g.,
attributes such as arousal, valence, dominance). As the emo-
tion becomes more intense, we expect the performance of
speaker recognition tasks to drop. Can we define emotional
regions for which the speaker recognition performance is
expected to be reliable? This study focuses on automatically
predicting reliable regions for speaker recognition by analyzing
and predicting the emotional content. We collected a unique
emotional database from 80 speakers. We estimate speaker
recognition performance as a function of arousal and valence,
creating regions in this space where we can reliably recognize
the identity of a speaker. Then, we train speech emotion
recognizers designed to predict whether the emotional content
in a sentence is within the reliable region. The experimental
evaluation demonstrates that sentences that are classified as
reliable for speaker recognition tasks have lower equal error

rate (EER) than sentences that are considered unreliable.

1. Introduction

An important area in speech processing is speaker recog-
nition, where the task is to determine the identity of a
speaker from a pool of individuals [1]. The process consists
of training speaker models, which are evaluated with sepa-
rate recordings (test partition). There are several conditions
that lead to a drop in speaker recognition performance
including emotions. Speaker recognition models are trained
with fairly emotionally-neutral speech. If the test speech
is emotional, the speech features will deviate from their
expected values, creating a mismatch between train and
test conditions. This mismatch affects the performance of
speaker recognition systems [2], [3], [4], [5], [6], [7].

Previous studies have shown the effect of emotion in
speaker recognition tasks, providing compensation schemes
[8], [9], [10], [11]. However, these compensation approaches
may negatively affect the performance of speaker recogni-
tion systems for emotionally neutral recordings [3]. It is
important to identify when emotion compensation scheme

are needed. In some cases, the speaker recognition perfor-
mance will be so unreliable that it is better to discard that
recording, prioritizing forensic analysis on other recordings.
Therefore, it is important to distinguish the emotional range
conveyed on speech for which we can reliably recognize the
identity of the speaker.

This study (1) provides a comprehensive analysis of
the reliability of a speaker recognition task in the presence
of expressive speech, and (2) uses emotional classifiers
to determine sentences for which the speaker recognition
performance is less reliable. First, the study analyzes the
performance of a speaker recognition system evaluated with
expressive speech. The analysis is conducted on a subset
from the MSP-PODCAST corpus [12]. The corpus contains
several hours of natural emotional speech from multiple
speakers appearing on audio-sharing websites. The emo-
tional content of the corpus is annotated in terms of the
following emotional attributes: arousal (very calm versus
very active), valence (very negative versus very positive) and
dominance (very weak versus very strong). We analyze the
speaker recognition performance as a function of the emo-
tional attribute scores, extending our previous work from
40 to 80 speakers [13]. From the analysis, we identify re-
gions/boundaries in the arousal-valence space, defining three
classes for reliable, uncertain and unreliable sentences (i.e.,
we can/cannot recognize the identity of a speaker within a
certain threshold of error). We formulate this problem using
a multiclass emotional classifier, where the classes are the
regions of reliability in the emotional space. The challenge is
to automatically detect when utterances fall in these regions.

We evaluate performance in terms of equal error rate

(EER) of all utterances in the predicted region (reliable,
uncertain and unreliable). Our results show that the EERs
in the predicted classes match the EERs obtained when
we use the emotional labels assigned to the sentences. The
results validate our framework for predicting reliability of
the speaker recognition task in the presence of expressive
speech. The key contribution of this study is combining
emotion recognition and speaker recognition using a novel
framework, providing a valuable tool for forensic analysis.

2. Related Work
2.1. Speaker Recognition and Emotion

Emotional speech affects the performance of speaker
recognition systems [2], [3], [4], [5], [6], [7]. Previ-
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ous studies have commonly analyzed speaker verifica-
tion/recognition in terms of categorical emotions such as
happiness, anger and sadness [3], [6], where the goal is to
create compensation techniques to improve speaker recog-
nition performance. These methods include modification
of features from neutral to emotional categories [4], [6],
and use of emotional and gender information to train the
system [10]. These studies have two main drawbacks. First,
they have represented emotion with categorical emotions,
which is not very practical, as emotions in daily interaction
includes ambiguous behaviors with mixed emotions [14].
Categorical labels do not capture the intensity or within-
class variability which may have an important effect on
speaker recognition tasks (e.g., hot anger may affect speaker
verification performance while cool anger may have no
effect). Second, previous studies have used a limited number
of speakers, who were asked to provide acted recordings.
Our study attempts to break these barriers.

In our previous work, we evaluated the speaker verifi-
cation performance in terms of emotional attributes using a
set of 40 speakers from the MSP-PODCAST corpus [13].
Instead of emotional categories, the evaluation represented
emotions using arousal, valence and dominance. This rep-
resentation provides better resolution to study the role of
emotion in speaker recognition tasks (note that emotional
categories can be mapped to attribute dimensions [15]). The
analysis showed that the EER dropped as the emotional
attributes depart from neutral speech. This paper follows up
with the analysis, increasing the number of speakers from
40 to 80 (Sec. 3.3). The analysis is used to train an emotion
classifier to predict the reliability of speaker recognition
tasks.

2.2. Predicting Speaker Recognition Reliability

An important problem in speaker recognition is to pre-
dict the reliability of the results under various conditions.
Previous studies have used a confidence measure to improve
the speaker recognition model. Huggins and Grieco [16]
used a confidence measure which included several factors
that affect speaker identification tasks (mismatch between
train and test data quality in terms of signal to noise

ratio (SNR), duration, number of speakers). The addition
of the model confidence measure reduced speaker recog-
nition errors by 2.8%. Campbell et al. [17] measured the
confidence of speaker verification for forensic tasks, using a
regression model trained with meta data (e.g., utterance du-
ration, channel information and SNR). Richiardi et al. [18]
used a probabilistic measure to evaluate the reliability of
speaker verification under noisy conditions. They proposed a
Bayesian network that takes as input the speaker verification
likelihoods and the SNR, predicting the reliability of a given
sentence. By discarding unreliable sentences, the system
reduced its EER from 9.3% to 2.8%. Villalba et al. [19]
analyzed various speech quality measures to predict the
reliability of a speaker verification task, showing that the
best features were the modulation index, SNR and vector

Taylor series (VTS) coefficients to linearly approximate the
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Figure 1. Data partition for speaker and emotion recognition tasks. This
partition (1) unifies the test set for both tasks, and (2) gives our best effort
to establish speaker independent sets for emotion recognition.

non-linear effect of noise and reverberation on the Mel-

frequency cepstral coefficients (MFCCs). To the best of our
knowledge, this is the first study predicting the reliability of
speaker recognition task in terms of emotional speech.

3. Speaker Recognition for Expressive Speech
3.1. Database

This study uses the MSP-PODCAST corpus [12]. This
corpus is an extensive collection of spontaneous speech from
multiple speakers appearing in Creative Commons licensed
recordings downloaded from audio-sharing websites. Some
key aspects of the corpus are the different conditions in
which the recordings are collected, large number of speak-
ers, and natural content from spontaneous conversations
conveying emotional behaviors. Each utterance in the corpus
is annotated by at least five raters using an online crowd-
sourcing platform using a protocol inspired in Burmania et
al. [20]. Emotional dimensions are annotated using seven-
Likert scales for arousal (1- very passive versus 7- very
active), valence (1- very negative versus 7- very positive)
and dominance (1- very weak versus 7- very strong). The
sentences are also annotated for primary categorical emo-
tions where raters selected the class that best represented the
utterance. The corpus currently contains 13,432 sentences
(21h 15m). The readers are referred to Lotfian and Busso
[12] for more information about the corpus.

For the speaker recognition task, we manually annotate
the identity of the speakers in the database. We have iden-
tified 95 speakers from whom we have at least 300s of
speech data. Figure 1 illustrates the data partition of the
database for speaker and emotion recognition tasks. The
speaker recognition task is evaluated with sentences from 80
speakers (7,796 – 13h 21m), leaving enough samples outside
this set to train emotion classifiers (790 for validation set,
4,846 for train set). The partition gives our best effort to
have speaker-independent partitions for emotion recognition
experiments. Notice that the test set for both tasks have to be
the same to assess the effectiveness of emotion recognition
to assess the reliability in speaker recognition tasks.

3.2. Speaker Recognition Framework

The speaker recognition system uses the i-vector frame-
work with a mean normalized probabilistic linear discrim-
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TABLE 1. CRITERIA TO FORM THE TRAIN SET FOR THE SPEAKER
RECOGNITION TASK, USING THE MSP-PODCAST DATABASE.

Criteria
CRITERION 1: Add utterances at random where the categorical emotion
is “neutral” and arousal, valence, and dominance values are inside the range
[3,5]. 1203 utterances
CRITERION 2: Add utterances at random where the categorical emotion
is “neutral” and arousal, valence, and dominance values are inside the range
[2,6]. 417 utterances
CRITERION 3: Add utterances at random where the categorical emotion
is “neutral” and arousal, valence, and dominance values are inside the range
[1,7]. 7 utterances
CRITERION 4: Add utterances at random where the arousal, valence, and
dominance values are inside the range [3,5], regardless of the categorical
emotion. 206 utterances
CRITERION 5: Add utterances at random where the arousal, valence, and
dominance values are inside the range [2,6], regardless of the categorical
emotion. 145 utterances

[The range for attributes is [1-7], where 4 is neutral value.]

inant analysis (PLDA) back-end. The i-vector model pro-
vides a method for compressing high dimensional Gaussian
super-vectors into a low dimension space [21], [22], [23].
In the PLDA framework, the average of all enrollment i-
vectors is used as the final representation of the speaker
model [24]. More details about the framework can be found
in Parthasarathy et al. [13]. We use a 256 component mixture
UBM for training the speaker recognition models. The mod-
els are trained on a 39 dimensional feature vector consisting
of 13 MFCCs + � + ��. The dimension of the i-vector is
empirically set to 200.

To understand the effect of emotional speech on the
speaker recognition task, we create a mismatch where the
models are trained with neutral speech, and tested with
either neutral or emotional speech. We have at least 300s of
speech from 80 speakers in the corpus, where we used 150s
for training the models. Since the distribution of emotion
varies across speakers, defining 150s of neutral speech
is not straightforward. Table 1 shows the criteria used to
sequentially get 150s of speech per speaker to train our
models. Table 1 also gives the total number of utterances
under each criterion. We use 1,978 sentences to train the
models. The remainder 5,818 sentences from the 80 speakers
are used to test the models (Fig. 1).

3.3. Speaker Recognition results

We use EER to evaluate the speaker recognition per-
formance. The analysis follows the approach presented by
Parthasarathy et al. [13], which aims to understand speaker
recognition performance as a function of arousal and valence
values. We split the arousal-valence space into 2D bins
separated by 0.1 (arousal and valence scores are in the range
[1,7]). Each bin is associated with the sentences that are
within a 0.4⇥0.4 window centered at the middle of the
2D bin. Unlike our previous study where the EER was
individually calculated for each test utterance, we estimate
a single EER value for the sentences associated with the
bin. This EER value is assigned to the bin. To make the
analysis more robust, we only consider bins with at least
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Figure 2. EER of speaker recognition task as a function of arousal and
valence.

Figure 3. Binary map indicating the regions where we achieve less than
2% EER for the speaker recognition task after dilation and erosion. Bins
in black indicate EER less than 2%.

10 speakers with at least 1 test utterance, increasing the
diversity across speakers and sentences. Figure 2 illustrates
the mapping between the emotional attributes and the EER
for the speaker recognition task. White spaces indicate that
a given region does not meet our criteria. Figure 2 shows
lower EER around the neutral region corresponding to the
[4,4] coordinate. The EER increases as we deviate from the
neutral region. The results are similar to our previous study,
but more conclusive as our current analysis is with twice as
many speakers (i.e., 80 speakers). There are some regions
with lower EER around the boundaries, which is probably an
artifact of having lower number of utterances and speakers
around these regions. Importantly, the figure identifies re-
gions of reliability for the speaker recognition task (areas in
the arousal-valence space where the EER is small). The rest
of the study focuses on predicting the speaker recognition
reliability using emotional speech classifiers.
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(a) Relieable Region (b) Uncertain Region (c) Unrelieable Region
Figure 4. Region of reliability for speaker recognition task. Shaded gray regions indicate the boundaries for reliable, uncertain and unreliable classes
chosen for the evaluation in Section 4.1.

4. Reliability for Speaker Recognition

This section formulates the prediction of the reliability in
speaker recognition tasks as a speech emotion classification
problem. Section 4.1 explains the framework to define re-
gions of reliability for speaker recognition tasks. Section 4.2
introduces the emotional classifiers trained to automatically
predict these regions of reliability.

4.1. Regions of Reliability for Speaker Recognition

Figure 2 illustrates that speaker recognition tasks are
affected by expressive speech. When the emotional descrip-
tors for arousal and valence are between 3 and 5, the EER
is very small, suggesting that for neutral speech, the speaker
recognition system has a reliable performance. For example,
Figure 3 shows all the bins with EER less than 2%, after
smoothing the binary mask by applying erosion and dilation
operations. We can approximate this reliable region with
the shaded gray region. This observation leads us to define
regions of reliability in the arousal-valence space.

We aim to define reliable and unreliable regions for
speaker recognition tasks. Following the analysis in Figure
3, we define the reliable region with the rectangle centered
at the origin illustrated with the shaded gray region in Figure
4(a). We expect that sentences in this region will have EER
less than 2%. For the unreliable regions, we consider all
the bins where the EER was greater than 3%. The shaded
gray areas in Figure 4(c) illustrates the unreliable regions.
The region between the 2% and 3% EER is referred to as
the region of uncertainty, where we cannot make a decision
about the reliability of the sentences. Figure 4(b) illustrates
the rectangular boundaries in the arousal-valence space for
uncertain regions. Notice that we arbitrarily set these thresh-
olds in the definition of reliable, uncertain and unreliable
regions. As we increase the number of speakers, change
the speaker recognition system, or increase the diversity
of our sentences, we expect a different speaker recognition
performance. However, these threshold seems appropriate
for this study when we consider the results in Figure 2.

4.2. Predicting Reliability with Emotion Classifica-
tion

Having defined regions of reliability for the speaker
recognition task, the challenge now is to automatically
predict where the test speech belong. We formulate the
reliability estimation as a three class problem following the
regions in Figure 4. Using acoustic features, we train a deep
learning classifier where the goal is to determine if a speech
sample is on the reliable, uncertain or unreliable region. In
addition to accuracy in this multiclass problem, we are also
interested in determining the EER for sentences predicted
in each class, where the goal is to obtain similar numbers
as the one obtained with the ground truth emotional labels.

4.2.1. Acoustic features. The study employs the popular
feature set introduced for the Interspeech 2013 Computa-
tional Paralinguistic Challenge. We first extract a set of
frame level features referred to as low-level descriptors

(LLDs). The LLDs include fundamental frequency, MFCCs,
zero crossing rate among other features. For each sentence, a
set of global statistics such as arithmetic mean and standard
deviation are calculated over the LLDs, which are referred
to as high-level features (HLFs). The IS2013 feature set
contain 6,373 HLFs per utterance. More details on the
feature set can be found in [25]. The features are extracted
using the OpenSmile toolkit [26].

4.2.2. Classification framework. We use a deep neural

network (DNN) architecture to classify the test utterances
into three classes. The speaker recognition task include
data from 80 speakers (7,796 sentences). Since the speaker
recognition results are only available for the 5,818 sentences
used to test the speaker recognition models, we use the
same testing set for the emotion recognition task. The DNN
has parameters that are optimized using the validation set
consisting of 15 speakers (790 utterances). To facilitate that
our classification models are trained with speaker indepen-
dent partitions, we use only the data from the rest of the
corpus (4,846 utterances) to train our classifiers. Figure 1
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TABLE 2. CONFUSION MATRIX BETWEEN THE CORRECT AND
PREDICTED CLASSES FOR THE EMOTIONAL CLASSIFIERS

Predicted Class
Reliable Uncertain Unreliable

Correct Class
Reliable 905 822 136

Uncertain 973 1398 426
Unreliable 201 540 417

summarizes the partitions used for the emotion recognition
task.

The proposed DNN consists of two hidden layers with
1,024 nodes, implemented with rectified linear unit ( ReLU).
A dropout of 0.5 is used at the input layer (features) and the
first hidden layer to prevent overfitting. The loss function
for the DNN is the cross entropy between the true class
label and predicted label. The network is trained with 100
epochs with early stopping based on performance on the
validation set. We use the z-normalization technique to nor-
malize the input features, where we subtract their mean, and
divide them by their corresponding standard deviation. The
mean and standard deviation values are calculated from the
sentences in the training set. After normalization, we realize
that there are some unreliable features whose deviation from
the mean is quite large (> 3). If the features are normal
distributed, only 1% of them should fall outside this range.
Notice that the data is very heterogeneous, with different
recording conditions. We reduce the effect of these features
by setting their value to zero after z-normalization.

4.3. Results

We evaluate the performance of the multi-class emotion
recognition problem. Table 2 gives the confusion matrix
for the original and predicted classes. From the confusion
matrix we evaluate the F1-score for the three classes. The
F1-score is 0.46 for the reliable class, 0.5 for the uncertain
class and 0.39 for the unreliable class. Notice that assigning
random classes would give a F1-score of 0.33. Therefore,
our classifier performs above chances. This is a nonconven-
tional speech emotion recognition problem where the classes
have irregular boundaries in the arousal-valence space. In
spite of the challenges of this classification problem, our
system is able to obtain an average F1-score of 0.45.

More important than the speech emotion recognition
results is the speaker recognition performance for sentences
identified as reliable, uncertain and unreliable. First, we
calculate the EER when the classes are defined using the
ground-truth emotional labels. The results are estimated over
all the sentences that fall within the boundaries of the respec-
tive classes. Figure 5(a) reports the detection error tradeoff

(DET) curves for the speaker recognition task for each of
the three classes. We observe a clear separation between the
reliable and unreliable classes. The EER can be calculated
as the point when the false positive rate (FPR) equals the
false negative rate (FNR). The first row in Table 3 shows
the EER for the three classes defined with the ground truth
labels. The EER for the unreliable class (2.85%) is almost
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(a) Ground truth emotional labels
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Figure 5. DET curves for speaker recognition task using reliability classes
from the (a) emotional ground truth labels, and (b) predicted classes.

TABLE 3. EER FOR THE SPEAKER RECOGNITION TASKS FOR
DIFFERENT REGIONS OF RELIABILITY. ROWS INDICATE THE TYPE OF

TASK, ORIGINAL, PREDICTED CLASSES

Type EER Reliable EER Uncertain EER Unreliable
Original 1.47 2.03 2.85
Predicted 1.64 2.04 2.76

double the EER for the reliable class (1.47%). Ideally, the
EER for the predicted classes will maintain this separation.

Figure 5(b) shows the DET curves when the classes are
predicted with the classifier. We follow the same procedure,
where the speaker recognition results are estimated over all
the sentences assigned to each of the three classes. The
figure shows similar results as the ones obtained with the
ground truth emotional labels (Fig. 5(a)). The second row in
Table 3 shows the EER for the predicted classes. The table
shows that the EER for both conditions are very similar.
This analysis validates the methodology to assess speaker
reliability based on emotional speech classifiers.

5. Conclusions

This paper proposed to predict the reliability of a speaker
recognition task by considering the emotional content of
the sentence. We presented a comprehensive analysis from
80 speakers to understand the performance of a speaker
recognition system as a function of arousal and valence
scores. We created a mismatch by training the speaker
models with neutral speech and testing it with expressive
speech. The analysis showed that emotional speech indeed
affected the speaker recognition performance, especially
for extreme values of arousal and valence. The analysis
provided regions in the arousal-valence space for which
we expect to have reliable speaker recognition results. This
observation motivated us to train a speech emotion classifier
to identify sentences belonging to reliable, uncertain and
unreliable classes. We formulated this problem as a three
class problem, training our speech emotion classifier to
predict the reliability of a given sentence. The evaluation
demonstrated that the DET curves and EER values are
similar when the reliable, uncertain and unreliable classes
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are defined either with ground truth emotional labels or with
the predictions of our classifier.

This study demonstrated the potential of using emotion
recognition in speaker recognition tasks. There are several
directions that we are planning to explore. First, we will
work on extending the MSP-PODCAST corpus including
more speakers and diversifying the emotional content of
the corpus. Second, we will concentrate on training better
models for the emotion recognition task. We will tackle
the problem using regression models that predict the values
for arousal and valence. Our previous work has shown
the benefits of performing regression by jointly learning
the emotional dimensions with a multi-task architecture
[27]. We will extend this study using those techniques to
improve the robustness in predicting the reliability of a
speaker recognition task. Third, we will estimate the relation
between EER and emotional attributes (i.e., Fig. 2) by eval-
uating multiple speaker recognition/verification frameworks,
not just one as proposed in this study. This extension will
generate a smoother mapping that is more general. Fourth,
we will consider other factors affecting speaker recognition
systems (e.g., channel). Finally, for sentences that are iden-
tified as unreliable, we will explore compensation schemes
to improve the speaker recognition task. This approach will
not affect the performance of sentences in the reliable group,
which is an important advantage of the proposed solution.
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