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ABSTRACT Acoustic metrics extracted from speech have the potential to serve as novel biomarkers for a
variety of neurological and neurodevelopmental conditions, as is evidenced by the rapidly growing corpus
of research articles studying the links between brain impairments and speech. In this paper, we discuss the
advantages and the disadvantages of speech biomarkers and the various challenges in the design and the
implementation of portable speech-based diagnostic and assessment tools. Furthermore, we provide a case
study, presenting our experiences in developing an assessment tool for the detection of mild traumatic brain
injuries (concussions) and discuss the challenges in obtaining and analyzing large sets of speech recordings
that can be used to study the impact of brain injuries on vocal features.

INDEX TERMS Speech analysis, vocal features, mild traumatic brain injuries, concussions, speech
recognition.

I. INTRODUCTION
Traumatic brain injuries (TBIs) are a disruption of normal
brain function due to a bump, blow, or jolt to the head, e.g.,
caused by car accidents, explosive blasts, and head-to-head
hits in contact sports. In the U.S. alone, TBI accounts for
an estimated 1.6-3.8 million sports injuries every year [1]
and nearly 300,000 concussions are being diagnosed among
young athletes every year [2], [3]. Concussions (also referred
to asmild traumatic brain injuries ormTBI) are very common
consequences of motor vehicle accidents, falls, and sports
injuries. Athletes in sports such as football, hockey, and
boxing are at a particularly large risk, e.g., six out of ten NFL
athletes have suffered concussions, according to a study
conducted by the American Academy of Neurology in 2000.
In addition, TBI is also very frequent among soldiers
and often called the ‘‘signature wound’’ of the Iraq and
Afghanistan wars. The potential short- and long-term impacts
on the health and well-being of individuals with brain injuries
are extensive. For example, individuals with mTBI may
display a range of somatic, affective, and cognitive symptoms
such as headaches, depression, loss of memory, and loss
of brain function. These symptoms are collectively known
as Post Concussion Syndrome (PCS) and may persist for

weeks or months. The effects of concussions and other brain
injuries can be devastating if they remain unrecognized for
long durations of time. Recent events in professional sports
(such as the suicide of Chicago Bears safety Dave Duerson
in 2011) have raised awareness of themany effects of diseases
such as chronic traumatic encephalopathy (CTE), which has
been tied to depression, dementia, and suicide. A number
of studies [4], [5] have shown that head injuries can
lead to other long-term health issues such as an elevated
incidence of Alzheimer’s Disease and a reduced age of onset
for Alzheimer’s [6]. The work presented in [7] has shown
that CTE in boxers leads to dementia developing at a higher
rate and a younger age, compared to the general population.
Finally, in another recent study [8], it was reported that the
diagnosis of mild cognitive impairment (MCI) was more
common among football players who reported three or more
concussions compared to players reporting none.
The dramatic impact of neurological degenerative

pathologies, trauma, stroke, psychiatric disorders, and other
disorders affecting the brain on the quality of life and life
expectancy is a growing concern. These impacts on the
short- and long-term health can be particularly dramatic for
young adults whose brains have not yet fully developed.
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Unfortunately, it is estimated that almost 90% of concussions
remain undetected and therefore untreated [9]. Reasons why
so many concussions remain undetected include the fact that
brain injuries are difficult to diagnose due to the subtlety of
symptoms, a lack of reliable biomarkers that can be used
to quickly and non-intrusively detect signs of concussions,
and a lack of ‘‘sideline’’ assessment tools and technologies
that can capture and analyze these biomarkers in near real-
time wherever needed. Traditional diagnostic tools used to
diagnose brain injuries (such as CT scan, MRI, or x-ray)
do not detect concussions because they do not leave any
physical traces of damage in the brain. A number of
concussion assessment tools are available that can be used
to facilitate diagnosis, most of them being neurocognitive
tests. One important trend used in sports medicine is the
use of baseline testing of athletes prior to an injury. These
tests are typically administered during the pre-participation
physical exam and repeated whenever an athlete might have
experienced a concussion. Test results are then compared to
the baseline to establish whether a concussion has occurred
(i.e., when the scores differ significantly) and to determine the
progress of recovery of the athlete during the rehabilitation
period. Today, computerized neuropsychological tests are
slowly being adopted by schools and sports teams across
the country, but the effectiveness and accuracy of existing
concussion tests are increasingly being questioned and it
is likely that future concussion assessments will rely on a
combination of different types of screening tools to increase
the accuracy of assessment results [10]. Therefore, there is
a need for new concussion biomarkers and screening tools
that provide reliable results, but is also easy to use, quick,
and can be administered wherever and whenever needed. For
example, in athletics, researchers are looking for tools that
can be used ‘‘at the sideline’’ whenever an athlete may have
experienced a concussive hit, without being intrusive and
time-consuming. Luckily, the availability of low-cost mobile
computing platforms (smartphones and tablets) provides an
opportunity for such sideline testing, but only if appropriate
biomarkers can be identified.

Over the last couple of decades, a plethora of research
results have provided evidence that neurological disorders
leave a fingerprint in speech production and speech signal
analysis can provide clinical information that can be
used to predict certain diseases, diagnose illnesses, and
assess disease progression or the effectiveness of treatment
regimens [11]–[15]. The primary idea of using speech as
biomarker is that brain injuries often manifest themselves by
affecting the coordination and timing of the speech motor
system, which in turn is reflected in the speech (e.g., distorted
vowels, hypernasality, imprecise consonants, etc.) [16].
Speech analysis can be done quickly (even on modern mobile
devices such as smartphones and tablets), with minimum
inconvenience or intrusion, and with minimal cost
(e.g., compared to Nuclear Magnetic Resonance and other
advanced technologies). The characteristics of changes
in speech and voice caused by neurological diseases,

such as Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), cerebellar demyelination, and stroke, offer
an opportunity to provide information for early detection
of onset, progression, and severity of these diseases. While
previous research results have shown that speech can serve
as a biomarker for neurological conditions, very little has
been done in trying to coordinate the perceptual features with
acoustic measurements to develop an objective, reliable, and
accurate diagnostic and assessment instrument. Therefore,
this paper first discusses the various challenges encountered
in designing and developing diagnostic tools using speech
analysis in general and then provides a case study of a speech
data collection effort specifically for concussion detection.

II. RELATED WORK
There have been several previous studies related to motor
speech disorders and their effects on speech acoustics.
Theodoros et al. conducted a study of the speech character-
istics of 20 individuals with closed head injuries (CHI) [17].
Their main result was that the CHI subjects were found to be
significantly less intelligible than normal (non-neurologically
impaired) individuals, and exhibited deficits in the prosodic,
resonatory, articulatory, respiratory, and phonatory aspects of
speech production. Ziegler and von Cramon discovered an
increase in vowel formant frequencies as well as duration
of vowel sounds in persons with spastic dysarthria resulting
from brain injury [16]. While the focus of our work is on
the impacts brain injuries have on speech production, several
research efforts have focused on speech processing (i.e., the
ability to process and interpret speech). In [18], a variation
of the Paced Auditory Serial Addition Task (PASAT) test,
which increases the demand on the speech processing ability
with each subtest, is used to find out the impact of TBI on
both auditory and visual facilities of the test takers.
Hinton-Bayre et al. [19] illustrated that tests on speech
processing speed were affected by post-acute mTBI on a
group of rugby players. Studies have also been conducted
on the accommodation phenomenon, where test takers tend
to adapt or adjust to unfamiliar speech patterns over time.
Research has shown that accommodation is fairly rapid for
healthy adults [19]–[21], where the results presented in [21]
did not show that subjects with mTBI accommodate slower
than healthy subjects. While these prior efforts provide some
evidence that neurological conditions have an impact on both
speech production and processing, they are typically very
limited in the size of the subject pools, focus on only very few
specific vocal features, and face other challenges such as poor
quality of speech recordings. The purpose of our work is to
thoroughly investigate the relationship between brain injury
and vocal features that will provide the foundation for the
development of novel diagnostic and assessment tools based
on speech analysis [16], [17], [22].
Mild forms of traumatic injuries such as concus-

sions have received limited amounts of attention due to
the subtlety of the changes in speech compared to the
more readily detectable changes caused by many other
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neurodegenerative conditions. Parkinson’s disease has
received the most attention with respect to using speech
analysis. PD is a degenerative disease caused by the slow and
progressive destruction of neurons and patients characteristi-
cally show a variety of symptoms such as tremors, rigidity,
and bradykinesia [23], [24]. There are a variety of efforts
that have been made attempting to develop early screening
systems [12], [13], [25], [26], including techniques based on
speech signals [13], [14], [27], [28]. Nearly 90% of individu-
als with PD develop voice and speech disorders (dysarthria)
in the course of their disease [29] and affected patients may
complain about a quiet or weak voice and difficulties to
initiate speech. The work in [24] has analyzed speech signals
to obtain useful clinical information that may be used in order
to predict PD. It focuses primarily on the efficient design and
implementation of clustering algorithms to quickly identify
patients that may require more expensive investigations such
as the use of MRI. Another well-known study has been per-
formed by the University of Oxford in collaboration with the
National Centre for Voice and Speech, Denver, Colorado [30],
where the researchers collected 195 voice recordings with the
goal to discriminate healthy people from those with PD.

In addition to PD, a variety of other diseases have received
some attention with respect to investigating their relationship
to speech. Aphasia is a communication disorder that impacts
a person’s ability to use and comprehend language [31], [32].
It is a symptom of brain damage that affects approximately
one million Americans and is primarily caused by stroke.
One out of four stroke survivors experiences some form
of language impairment, e.g., when a stroke damages the
frontal and parietal lobes in the right hemisphere of the brain.
Analysis of voice data can potentially be used to detect subtle
signs of stroke, measure the extend of the damage, and assess
the rehabilitation progress [33].

Post-traumatic stress disorder, often abbreviated as
PTSD [34], is a complex disorder in which a person’s
memory, emotional responses, intellectual processes, and
nervous system have been disrupted by a traumatic
experience. The diagnosis is usually made on the basis of
the patient’s history and the responses to brief interviews.
Positron emission tomography (PET) scans of PTSD patients
showed that trauma affects the parts of the brain that govern
speech and language, therefore speech analysis may provide
insights into the presence of PTSD and a person’s response
to treatment regimens.

Acoustic features of vocalization of autistic or at-risk infant
and children have also been analyzed. The Diagnostic and
Statistical Manual of Mental Disorders by the American
Psychiatric Association [35] characterizes autism as severe
and pervasive impairments in the development of reciprocal
social interaction, verbal and nonverbal communication
skills, and stereotyped patterns of behaviors and interests.
It is a pervasive developmental disorder that typically
manifests itself in the first three years of life [36]. Early
identification of ASD (autism spectrum disorder) has become
a national priority as an increasing number of studies

provide evidence that the impairments associated with
ASD can be ameliorated through intensive early, targeted,
autism-specific services [37], [38]. For example, in several
papers [36], [39]–[47], researchers present the analysis
results of cry signals of infants, showing that certain
acoustic metrics such as pitch and formant frequencies can
vary between healthy children and children later diagnosed
with ASD.
As part of its investigation of the EXXON VALDEZ

accident and oil spill, the National Transportation
Safety Board (NTSB) examined the captain’s speech for
alcohol-related effects, with speech samples obtained from
marine radio communications tapes [48]. The speech samples
were tested for slowed speech, speech errors, mis-articulation
of difficult sounds (‘‘slurring’’), and audible changes in
speech quality. It was found that speech immediately before
and after the accident displayed large changes of the sort
associated with alcohol consumption. As a consequence, it
appears that speech analysis may be a useful technique to
provide secondary evidence of alcohol impairment [49]–[51].
Another group of health conditions that has the potential

for assessment and diagnosis based on speech analysis
is the group of mental disorders. The Global Burden of
Disease Study by the World Health Organization has found
that mental health difficulties are currently the leading cause
of disability in developed countries [52] and projections
indicate that the global burden of mental health difficulties
will continue to rise in the coming decades. In the UK,
mental health has overtaken unemployment as the nation’s
most expensive social problem [53]. As an example, there
are no established objective biomarkers for schizophrenia
and it has been previously reported that there are notable
qualitative differences in the speech of schizophrenics. Vowel
production of people with schizophrenia has been analyzed
in [55] and [56] to determine whether a quantitative acoustic
and temporal analysis of speech may be a potential biomarker
for schizophrenia.
Finally, there has also been prior work studying

biomarkers for multiple diseases simultaneously, e.g., the
work in [56] presents a rationale for acoustic analysis
of voices of neurologically diseased patients, providing
preliminary data from patients with myotonic dystrophy,
Huntington’s disease, Parkinson’s disease, and amyotrophic
lateral sclerosis, as well as from individuals at risk for
Huntington’s disease. This work showed that noninvasive
acoustic analysis may be of clinical value for early diagnosis
and for documenting progression for various diseases.

III. MOTIVATION AND BACKGROUND
A. MOTOR SPEECH DISORDERS
Under normal circumstances, speech is produced with ease
and without thought to the complexity of the underlying
mechanisms that are employed. But in fact the act of
speaking requires the integration of numerous neuro-
muscular, neurocognitive, and musculoskeletal activities.
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TABLE 1. Types of dysarthria.

An average speaking rate, which consists of producing
14 sounds (phonemes) per second, requires the execution
of 100 different muscles containing on average 100 motor
units generating 140,000 neuromuscular events [57]. This
motor speech execution is proceeded by a planning/
programming phase that involves translating abstract
linguistic-phonological representation into a code that is
then used by the motor system to generate those specific
moves. Since the motor speech system is a dynamic and
complex act involving many systems and connections,
disruptions can occur at any or all levels of planning and
execution. These breakdowns result in predictable patterns
of disturbances [31], [32]. Motor speech disorders are a
group of disorders resulting from disturbances in the central
or peripheral nervous systems that affect the motor
programming/programming and execution/control/regulation
of the motor movements.

Motor speech disorders can be categorized into two
distinctive types. Apraxia of speech is an impairment in
the ability to plan and program the movements of speech,
usually due to the result of a cortical lesion in the dominant
hemisphere. Dysarthria is a disorder involving the execu-
tion of movement that affects the strength, speed, range,
steadiness, tone, or accuracy of movement that can affect
respiration, resonance, phonation, and articulation [31], [32].
Dysarthria is further categorized into different types
associated with specific types of neurological deficits and
disturbances, each distinguishable by specific auditory
perceptual and acoustic features (see Table 1). Thus, any
abnormality of the motor speech system can shed light on
the integrity of the neurological system. Currently, the most
widely used method of determining disturbances in the motor
speech system is through perceptual detection, which lends
itself to subjective bias. While computerized methods are
available, they lack convenience (i.e., bulky computer based
equipment), training in use of the equipment is complex, they
are expensive, and foremost, there is a lack of evidence to
support the contribution of the instrumentation in diagnosis
and treatment of motor speech disorders. However the need
for accurate, quick, objective measures is sorely needed to
assist in the diagnosis of the motor speech disorder. This
then will lead to correct and more cost-effective treatment,

as well as help with the understanding of the underlying
pathophysiological causes associated with concussion and
brain injuries in general.

B. SPEECH AS A BIOMARKER
Our research focuses on the identification of new biomarkers
that can be used to detect early (and often very subtle) signs
of new or deteriorating neurological conditions and traumatic
brain injuries, while being easy-to-use and minimally inva-
sive. Over the last couple of decades, several research efforts
have provided evidence that neurological disorders leave a
fingerprint in voice and speech production [31], [32]. Speech
signal analysis can provide clinical information that can be
used to predict certain diseases, provide information about
the neurological location of specific diseases, and assess
disease progression or the effectiveness of treatment
regimens [11]–[15], [24], [48], [56], [58]. There are primarily
two methods (acoustic and perceptual) to assess the motor
speech characteristics associated with neurological disease
diagnosis. The most common method used is the auditory-
perceptualmethod (which involves a professional hearing and
seeing themotor speech changes associatedwith neurological
disordered processes) for clinical assessment, judgements,
and decisions regarding functional change. Obviously this
method is subjective, not reliably quantifiable, and can be
influenced by clinician bias. In addition, sometimes these
changes in motor speech are so subtle that they typically
cannot be recognized by perceptual features alone. The need
is for an integration of the auditory-perceptual method with
a more objective non-biased measurement of the disordered
speech features to accurately extract the most relevant
acoustic features in both time and frequency domain. The
primary hypothesis of our work is that brain injuries manifest
themselves by affecting the motor speech system, which
in turn is reflected in vocal feature changes (e.g., rate,
voice quality, loudness, resonance, vowel distortions,
hypernasality, imprecise consonants, etc.), as evidenced by
prior research such as the work presented in [16] and [23].
Toward this end, thorough and large-scale data collections
and investigations are required to lead to a better
understanding of the relationship of mTBI and speech,
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TABLE 2. Speech protocol.

such that a reliable speech-basedmTBI test can be developed.
This paper reports our challenges from building a portable
speech data collection app, to collecting large-scale speech
data on youth athletes, to the speech processing and analysis
to extract a series of identifiable and relevant speech features
for concussion detection. The hope is that these insights,
experiences, and outcomes will pave the way to future
assessment tools that are fast, objective, easy-to-use, and
accurate, and provide a more reliable basis for making
return-to-game decisions after concussions have been
confirmed.

IV. CHALLENGES IN THE DESIGN AND IMPLEMENTATION
OF A SPEECH-BASED DATA COLLECTION TOOL
This section describes the various challenges in designing
and implementing speech-based tools for both research pur-
poses and real-time diagnostics and assessment, focusing on
challenges in application design, speech processing, noise
management, user interface design, and data analysis, among
others.

A. SPEECH PROTOCOL DESIGN
As discussed in Section III-A, speech production is a complex
and integrated system that requires the involvement of about
100 different muscles, with different sounds requiring the
involvement of different sets of muscles performing in differ-
ent ways. An example of this is the difference between front,
middle, and back consonant and vowel sounds. While front
consonant sounds such as t and d require involvement of the
muscles in the front of the speaker’s mouth (e.g., lips, teeth,
front of the tongue), back sounds, such as g and k , rely more
on the soft palate and back of the tongue.Words then combine
these sounds, often in complex ways, e.g., a word such as
crisp ‘‘moves’’ from the back of themouth through themiddle
of the mouth to the front while articulated. Most prior efforts
in speech analysis for health purposes relied on ‘‘random’’
vocalizations, e.g., speech extracted from opportunistically
obtained recordings or video/audio captures. In these cases,
the quality of the acoustic features and the dependence of
speech on brain impairments may vary significantly from
recording to recording and from subject to subject.

However, if a specific speech protocol is used, i.e., the subject
is requested to articulate very specific sounds, words, or
phrases, the quality is controllable, and it is easier to compare
acoustic features across different subjects. This requires a
very careful design of the speech protocol, controlling for: the
quality of the production, the ease of administration, i.e., low
cognitive/language load, and omitting any words or phrases
that might trigger emotional responses. For example, initial
versions of our speech protocol included a series of words
that begin with the letter h. One of these words was hell and a
surprisingly large number of youth athletes displayed audible
changes in tone, hesitation, or even outright refusal to speak
the word into the microphone.
The current version of our speech protocol is shown

in Table 2; the protocol consists of seven brief tests, each with
a different type of text shown on the screen, where the subject
reads the text into the computer’s microphone as instructed
by the test application. The third column in the table shows
the test duration, i.e., how long the text is displayed, followed
by a brief description of the test in the fourth column. The
tests were designed to capture the salient features that are
influential to speech production in general and can directly
capture the deviant motor speech characteristics that might
be associated with concussion. These features include speed,
strength, range, accuracy, and steadiness of movement. These
features interact and impact each other such that if strength
of the motor components of speech are affected, speed, tone,
range of movement, accuracy, and steadiness might also be
affected. The details of each test are described below.

• Test 1: A series of multisyllabic words are shown on
the device’s screen for exactly 1.5 seconds each. It is
anticipated that subjects with mTBI would find it more
difficult to correctly enunciate these words. The words
consist of 4-5 syllables, varying from front consonant
[p, b, t, d, f, m, T] and front vowel [i, I, e, æ] sounds,
to middle consonant [l, s, z, n, S, j, r], middle vowel [2]
sounds, to back consonant [k, g, h], back vowel [u, o, a]
sounds. During normal speech production, movements
are rapid and produced without effort. Any difficulty
noted during this task would indicate deficits in range,
accuracy, and speed of movement.
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• Test 2: In the second test, the sentence put the book
here is displayed on the screen three times; first with
emphasis on put, then book, and then here. This test
examines the persons ability to put stress on different
words during running speech. Abnormalities in strength
and range during normal speech production can influ-
ence the prosodic features of speech, resulting in the
restricted ability to produce stress.

• Test 3: The third test requires the participant to read
the sentence we saw several wild animals. The stan-
dard syllabic rate may be affected and cause perceptual
differences in articulation. This test also examines the
accuracy, strength, and speed of muscle movement.
Accuracy is the result of coordinated and well-timed
movement.

• Tests 4, 5, and 6: In these tests, the subject is asked to
repeat the syllables pa, ka, and pa-ta-ka as quickly as
possible to measure alternating and sequential motion
rates (AMR and SMR, respectively) or diadochokinetic
rates. These are used to determine the speed, accuracy,
and regularity of motor movement. Most individuals can
produce these syllables 5-7 times/second. The test using
the syllables pa-ta-kameasures the ability to produce the
syllables rapidly and in proper sequence.

• Test 7: Subjects attempt to sustain the Aahhhh sound for
at least 5 seconds. Sustaining this vowel sound allows
us to examine muscle tone and steadiness of the tone.
Alterations in tone can occur during all components
of speech production and can affect perceptual and
acoustic speech measures. Usually, with normal speech
production, there are no interruptions or oscillations in
vocal tone. Most individuals will automatically produce
the tone at their habitual pitch and loudness level for
approximately 8-9 seconds. If unsteadiness of tone is
heard, this can be the sign of a neurological disorder such
as a concussion.

In summary, the more complex the words or utterances, the
higher the likelihood of errors and variations in the speaking
of these words. At the same time, the selected words and
phrases have been chosen, because they require involvement
of different parts of the mouth, tongue, and soft palate in the
back of the throat as they contain two or more very different
syllables. The examination of the efficiency and accuracy
of the motor speech system can provide information about
the integrity of the neurological system. Note that different
tests provide different opportunities for speech analysis,
e.g., single words cannot be used to measure AMR and SMR,
but they can be used to measure timing characteristics, stress,
and frequency composition of the speech. On the other hand,
continuous speech can be used to measure speaking rate or
variations in speed, intensity, etc., which could be difficult to
measure for short words. While individual words are rather
straightforward to detect and analyze using standard speech
recognition tools, analysis of continuous speech can be more
challenging, e.g., to accurately match the spoken sounds to
the sounds expected by the test. This can be particularly

challenging for advanced neurological conditions,
where mispronunciations or skipped syllables may be
common (Section IV-C discusses the challenges in speech
processing).
Another important choice in the design of the speech

protocol is how the vocal features are evaluated and there
are two primary approaches. First, an important trend used
in sports medicine is the use of baseline testing of athletes
prior to a potential injury. These tests are typically adminis-
tered during a pre-participation physical exam and repeated
whenever an athletemight have experienced a concussion and
the scores from the baseline are compared to the later scores.
In speech-based assessment, this is different in that there are
no ‘‘scores’’ obtained from the tests; instead, each recording
yields a series of acoustic features and we form the difference
between the features obtained from a subject’s recording and
that same subject’s baseline. For example, the pa-ta-ka test
described above results in a sequential motion rate and the
change in this rate in comparison to the rate measured in the
baseline recording is then used for analysis (e.g., a significant
reduction in this rate could indicate a neurological problem).
A challenge in this approach is then to identify which acoustic
features will vary more than others as a consequence of a
brain injury (thereby showing greater promise as a potential
biomarker) and also how to quantify these changes. This
baseline-based technique is the primary approach utilized in
our work. In contrast, vocal features can also be compared
to a speech norm, i.e., vocal features of a typical healthy
person. A main advantage of this approach is that no prior
baseline of a subject is required. While baselining is typically
no problem in sports, access to baseline recordings may be
difficult for older adults undergoing testing for neurodegen-
erative diseases or analyzing the speech of a soldier in a
remote area. However, there are numerous disadvantages to
norm-based assessment, e.g., these normsmust be established
through analysis of sufficiently large sets of recordings, ide-
ally divided into groups of subjects of different ages, genders,
and other medical conditions. For example, many of the vocal
features of a 60 year old healthy female will differ signif-
icantly from a male adolescent with a neurodevelopmental
condition. Accents and dialects are also very likely to impact
feature comparison. Therefore, a baseline-based approach
will typically be the preferred approach unless access to
baseline recordings is not possible. If a norm-based approach
is used, the feature comparison should occur with a norm
that matches the subject’s age, gender, and various potential
confounders as much as possible.

B. NOISE MANAGEMENT
The accuracy of speech analysis (recognition, word onset
detection, vocal feature extraction, etc.) degrades severely
when speech is recorded in adverse acoustical environments.
In recent years, significant advances have been made in the
area of developing robust speech processing systems that
are able to provide satisfactory results even in the presence
of environmental noise, including the use of microphone
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arrays [59] and filtering techniques [60]. When building
a speech-based diagnostic tool, our primary concerns are
(1) inaccuracies in the detection of the boundaries of words
and phonemes, (2) the inability to extract the desired vocal
features, and (3) significant errors in the vocal features.
However, while the primary goal of automated speech
recognition (ASR) systems is to accurately match a recorded
word to a dictionary word, given that we have a con-
crete speech protocol, recognition of the uttered words is
not necessarily required. In order to obtain high quality
voice recordings, we address the noise challenge by using a
high-quality noise-canceling microphone and a continuous
(real-time) evaluation of the quality of the recorded speech.
While a carefully selected microphone will be able to
eliminate most of the potential interferences, a software-
based signal quality analysis can be used to determine
whether speech quality is acceptable or a test should be
retaken.

FIGURE 1. Comparison of internal iPad microphone and unidirectional
external microphone in various noise scenarios.

In speech analysis, the Signal-to-Noise Ratio (SNR) is a
frequently used indicator of signal quality and noise level, and
estimated as:

10 log10
P̂speech
Pnoise

(1)

where P̂speech is the speech signal peak power and Pnoise is
the mean noise power. Assuming that speech recordings will
be obtained using mobile devices such as smartphones or
tablets, it is important to understand the limitations of the
omnidirectional microphones built into mobile devices.
Toward this end, Figure 1 compares the measured average
signal-to-noise ratio for the internal microphone of an
iPad mini tablet (left bars in the graph) and an external
microphone attached to the iPad, specifically, the SHURE
SM-10 noise cancellation microphone1 (right bars), which
is a low-impedance, unidirectional dynamic microphone
designed for close-talk head-worn applications such as
remote-site sports broadcasting and corporate intercom

1http://www.shure.com/americas/products/microphones/sm/sm10a-
headworn-microphone

systems. The microphone gain on the iPad was set to the
maximum (the gain setting can be varied from 0.1 to 1.0, with
0.6 being the default setting). Figure 1 compares themeasured
SNR for both microphones in five settings with different
quantities and types of noise: an empty room (the only ambi-
ent noises were humming sounds from electronic devices and
the AC), a room with several people talking about 20-30 feet
away from the microphone, a room with music playing from
a radio, a cafeteria with mid-morning crowds and activities,
and the same cafeteria during the busiest time of the day
(lunch hour). In all scenarios, the external microphone out-
performs the internal microphone, but the impact on SNR
is most dramatic in the noisiest environments. While speech
assessments in clinical settings are likely to be performed
in relatively quiet and noise-free environments, assessment
at the sidelines of sport events will experience much more
significant noise pollution, where high-quality microphones
are required. However, the results in Figure 1 indicate that
most noise issues can be prevented through careful selection
of the microphone. But the results also show that even with
a high quality microphone, the SNR can drop by more than
half in noisy environments, therefore, we also utilize real-
time evaluation of SNR on the recording device to determine
whether a recording is of satisfactory quality or not. Toward
this end, we continuously compute the SNR value of speech
while it is being recorded and indicate to the user at the end of
the test if the test was accepted or if it should be retaken (in the
latter case, the user will be told to either move themicrophone
closer to the mouth or to move to a quieter location). Given an
SNR estimate of a speech recording, we then use the approach
proposed in [61] to determine a threshold of 28dB, i.e., if on
average the SNR level of a recording is below that limit,
a retest is required.
Since signal and noise levels are combined into our speech

recordings, we can only estimate the SNR values using prior
knowledge about the behavior of the signal and the noise.
For example, SNR can be estimated using the technique
suggested by NIST,2 where energy levels are determined over
sections of the recording to characterize speech levels and
noise levels. Toward this end, a signal energy histogram is
generated by computing the root mean squared (RMS) power
(in decibels) over a 20 ms window, then the appropriate
histogram bin is updated, and finally the window is shifted
by 10 ms to repeat this process. This process also includes
an implementation of the ‘‘direct search’’ algorithm [62],
which can be computationally expensive to run on resource-
constrained mobile devices. By default, the algorithm iterates
250 times to obtain a reliable estimate for the SNR value.
However, this may be more resource-consuming than nec-
essary, e.g., Figure 2 compares the execution times of the
algorithm to the computed SNR values over varying numbers
of iterations. At the left of the graph, the default 250 iterations
lead to an SNR estimate of about 35dB (red line), but it
takes more than 5 seconds to compute this value (blue line).

2http://labrosa.ee.columbia.edu/⇠dpwe/tmp/nist/doc/stnr.txt
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FIGURE 2. Comparison of SNR accuracy and computational overheads of
SNR estimation technique.

When we reduce the number of iterations, we can see that
the execution overheads decrease quickly, while the SNR
estimate remains unchanged until about 10 iterations. That
means that it is possible to significantly reduce the number of
iterations, without impacting the accuracy, but with a drastic
reduction in overheads (e.g., for 10 iterations, the overhead
reduces to less than one second).

C. SPEECH PROCESSING
Before we can measure vocal features in speech, it is
necessary to first process the audio data, e.g., to perform pho-
netic transcription (e.g., vowel boundary, syllable rate, etc.).
To that end, we rely on current speech processing techniques
to process the audio before the analysis. ASR is the process
of converting a speech signal into its corresponding sequence
of words or other linguistic entities [63], [64]. Specifically,
we use the PocketSphinx tool [65], which is one of the few
currently available speech recognition toolkits based on
Hidden Markov Models (HMMs) and compatible with
portable devices.

If W is the word sequence and O is the feature
vector, we can estimate P(W |O), i.e., the most likely
word sequence given the observations, using the following
equation:

arg
W

max P(W |O) / P(O|W )P(W ), (2)

where P(O|W ) is the acoustic model implemented with
HMMs [66]. The structure of the HMMs is a left-to-right
topology with three states per phoneme. We use Gaussian
mixture models (GMM) for the observation probabilities.
The acoustic features are a 39 dimensional vector with
13 Mel Frequency Cepstral Coefficients (MFCCs) plus their
delta and delta-delta features. We use 64 mixtures for the
GMM. This configuration is commonly used in related ASR
studies. The acoustic models were trained with two large
speech corpora with read and spontaneous speech: the Wall
Street Journal-based Continuous Speech Recognition Corpus

Phase II (WSJ) [67] and the 1996 English Broadcast News
Speech (HUB4) [68]. We adapt these HMMs using several
of our own recordings using the speech protocol described
in Section IV-A to minimize mismatches between train and
test recordings. We use the Maximum A Posteriori (MAP)
adaptation [69] and the Maximum Likelihood Linear
Regression (MLLR) adaptation [70] with 6512 files contain-
ing sequences of words. The Word Error Rate (WER) of the
adapted ASR was about 9.8% when evaluated with the word
sequence recordings.
P(W ) in Equation 2 is the language model. Given

the speech protocol described in Table 2, we designed a
test-dependent language model. For the spoken sequences of
words and sentences, the language model is constrained to
the prompted entries. This approach improves the phonetic
boundary detection. For the AMR and SMR tests
(‘‘pa’’, ‘‘ka’’, and ‘‘pa-ta-ka’’), we implemented a grammar
with a finite state machine that allows multiple repetitions
of the target syllable. For Test 7 (extended vowel), we con-
strained the grammar to multiple repetitions of the given
vowel. Initially, we considered to adapt the acoustic models
with samples of the extended vowels, aiming to capture
their differences in duration with respect to regular vowels.
However, we realized that using the acoustic models with this
constrained grammar provided very good accuracy in phone
detection and segmentation.
The most challenging task for the language model is

Test 6 (‘‘pa-ta-ka’’). The task consists of repeating the
sequence of syllables as fast and often as possible,
so subjects make many mistakes altering the order of the
syllables (e.g.,‘‘pa-ka-ta’’), skipping syllables (e.g.,‘‘pa-ta’’),
producing mispronunciations (e.g., ‘‘pa-da-ka’’), replacing
syllables (e.g., ‘‘pa-ti-ka’’), and restarting the sequence
(e.g., ‘‘pa-pa-ta-ka’’). To derive an effective grammar for
this task, transcribers annotated the phonetic content and
syllable boundaries of 31 examples from Test 6. We created
a finite state machine grammar that captures the common
errors made by the subjects. These variations were then
properly weighted according to their frequency in this
reduced set.

D. ACOUSTIC FEATURES
Once an audio recording has been processed, the next step is
to extract various acoustic features that will form the basis
of the health diagnostics tool. Speech can be characterized
by a variety of different features and these features can be
determined for various linguistic elements such as phonemes,
vowels, words, or even entire sentences. Previous research
has studied various types of features of speech, although
some have received significantly more attention than others,
such as the fundamental frequency (F0 contour) and formant
frequencies F1, F2, etc. Figure 3 shows the time-domain
presentation of a brief voice recording (top) and the cor-
responding spectrogram, i.e., the time-frequency-amplitude
presentation of the signal (bottom), as visualized by the
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FIGURE 3. Time-domain presentation and spectrogram of a recording of a
single word.

Praat software.3 The identifiable repeating patterns found
in speech are called a cycle and the duration of a cycle
(glottal pulse) is the pitch period length and F0 is then the
inverse of the pitch period length. F0 is shown as the blue
dots/lines at the bottom of the spectrogram in Figure 3.
Formants are the maxima of the spectral envelope, and
are primarily determined by the shape of the vocal tract.
These concentrations are usually identified as F1, F2, etc.,
going from low to high frequencies (shown as the red
dots/lines in the spectrogram in Figure 3). The work in [71],
one of the most widely cited experiments on the acoustics
and perception of vowels, was conducted at Bell Telephone
Laboratories by Peterson and Barney in 19524 and is
an example of a study focusing on pitch and formants.
In this study, ten vowels were collected from 76 subjects and
fundamental frequency (F0), formant frequencies (F1-F3),
and formant amplitudes were extracted and analyzed.
Another well known effort for data collection and vowel
analysis is the Hillenbrand data set [72], which extends
the Peterson and Barney study and uses 139 subjects and
12 vowels, and which also considers formant frequency F4.

While we also consider F0 contour and formants for our
analysis, they are only a few examples of acoustic features
that we extract and analyze. Table 3 summarizes the
38 acoustic features that are extracted from our speech
samples, typically using open-source software solutions such
as PocketSphinx, which quite readily extract these features
for a given recording. The table provides a brief description

3http://www.fon.hum.uva.nl/praat/
4http://www.laps.ufpa.br/aldebaro/repository/pbvowel.htm

for each feature and also indicates for which of the 7 test
categories it is expected to be most useful. For example, time
measurements such as average and standard deviation of the
duration of a linguistic entity, duration of pauses, etc., can
be measured for all tests. The diadochokinetic (DDK) rate
measures how quickly a person can accurately repeat a series
of rapid, alternating phonetic sounds, such as the ‘‘pa’’, ‘‘ka’’,
or ‘‘pa-ta-ka’’ sounds in our test protocol, and therefore is
not meaningful for the categories of our protocol that consist
of single words only. Another feature, jitter, expresses cycle-
to-cycle variations of the fundamental frequency. While it is
typically measured over long sustained vowel sounds (as in
our test category 7), recently the use of jitter over short-term
time intervals has also shown promise in analyzing patholog-
ical speech [63]. While this list is more comprehensive than
most existing studies on variations of acoustic features due to
brain abnormalities, it is also a list that is far from complete.
That is, our focus has been on identifying what we believe to
be some of the more promising features, based on literature
or our own work, while ignoring ones that have shown to
be less relevant. Furthermore, many acoustic features can be
measured or interpreted in various ways, e.g., the F0 contour
or formant frequencies shown in Figure 3 are time-variant
parameters. In order to compare these frequencies between
two recordings (baseline and after a traumatic event), they
can be interpreted in different ways: averaged over the entire
linguistic entity or over smaller segments, the peak values,
the range, the slope, etc. Therefore, identifying and evaluating
new acoustic features and new representations or variants of
existing features remain open research challenges.

V. CASE STUDY
This section combines the techniques discussed in the pre-
vious section and presents a case study of a data collection
effort with the purpose of providing a better understanding of
the links between brain injuries and speech (i.e., the primary
purpose of the application is to collect speech recordings for
research purposes and not to provide real-time concussion
diagnostics), but also to highlight some of the challenges
experienced in performing such a data collection study.

A. DATA COLLECTION APPLICATION
Speech capture is performed on an Apple iPad mini,
coupled with the SHURE SM-10 microphone as shown
in Figure 4. All speech recordings were collected using
the SHURE SM10A external microphone at 44.1kHz,
16 bit, mono, but every recording was immediately
downsampled to 26kHz, which is the recommended sampling
rate for clinical and empirical voice analysis [73]. In addition
to the speech capture, the mobile app provides the subject
with an opportunity to provide additional health context.
Specifically, the subject provides the following information:

• Type of Test: Speech recordings are treated or stored
differently depending on the type of test:
– Baseline at Rest: This is typically performed

during the pre-participation physical exam,
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TABLE 3. List of acoustic features.

where the health of an athlete is evaluated before
sports activities begin. Most existing concussion
assessment tools perform first testing during that
event to establish a baseline for comparison with
future test results. In our data collection app, acous-
tic features are extracted and stored in a database
(either locally on the mobile device or, as in our
case, on a remote server). Since many subjects per-
form the test for the first time, the entire test is taken
twice to make the subject familiar with the specifics

of the test. The first recording is discarded and only
the features from the second test are retained.

– Recording Without Contact: This data collection
is performed after a baseline recording has been
obtained andwhen there is no specific reason to sus-
pect a concussion, e.g., to provide a non-concussed
control recording for research purposes.

– RecordingWith Contact:This data collection is per-
formed after a baseline recording has been obtained
and when there is reason to believe that a subject

1152 VOLUME 3, 2015



C. Poellabauer et al.: Challenges in Concussion Detection Using Vocal Acoustic Biomarkers

FIGURE 4. Data collection application structure on mobile device.

may have a concussion (e.g., after a severe hit or
jolt to the head during a football game). To put the
recording into the right context, additional informa-
tion is collected as will be described below.

– Post Concussion (Recovery): Finally, once a sub-
ject has been confirmed with a concussion and is
going through a rehabilitation and recovery phase,
additional speech recordings obtained at specific
intervals of time after when the concussion occurred
can provide insights into the recovery process and
duration.

Additional contextual information is essential to correctly
interpreting the speech recordings, e.g., recordings from
subjects that are confirmed to be concussed (via an evaluation
using other, traditional concussion assessment tools) can
be used to study statistical significance of various acoustic
features or to train machine learning algorithms to classify
subjects. It is important to note, however, that correctly
classifying subjects is difficult given the subtleties of many
symptoms experienced and the imperfect sensitivities of
existing tests. We therefore, whenever possible, attempt to
obtain scores and evaluations from more than one test.

After completing the speech protocol, the subject answers
whether prescription or over-the-counter medications are
being taken currently, which could have an impact on the
speaking performance. These are only two of many possible
confounders, therefore, future versions of our data collection
application are likely to ask additional questions, e.g., with
respect to sleep quality, level of exhaustion, stress levels,
potential intoxication, etc. When the ‘‘recording with con-
tact’’ data collection is concluded, the subject is also asked
when the suspected injury occurred (since time between
injury and recording may impact the evaluation results), and
the location of the head impact if known (front, back, right,
left, rotational).

In addition, at anytime (before, after, and independent from
taking the reading test) the subject, athletic trainer, or physi-
cian can provide additional information that will be relevant
for analysis, as shown in Table 4.

Figure 5 shows screenshots of some of the screens of the
reading test as implemented for the Apple iPad device. The
reading tests for categories 1 and 3 (words and sentences)

TABLE 4. Subject questionnaire.

are straightforward and the subject is simply shown what
to read into the microphone in the center of the screen.
At anytime, the subject can abort (and retake) a test. Test 2
requires the subject to put emphasis on different parts of the
sentence. Toward that end, the subject is instructed how to
read the sentence (‘‘read the sentence, saying the word in
CAPS louder’’); the sentence then shows the word to empha-
size in uppercase letters with an arrow and the annotation
‘‘Louder’’ further ensuring that the test instructions are clear
(second screenshot in Figure 5). The most challenging tests
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FIGURE 5. Test 1: Screenshots showing some of the reading tests.

are tests 4, 5, and 6 (sequential and alternating motion rates);
for these, the subject is first instructed to slowly read the
sequence shown on the screen (‘‘pa’’, ‘‘ka’’, or ‘‘pa-ta-ka’’),
where the sequence scrolls from right to left, with brackets
in the center of the screen indicating what to read
(third screenshot in Figure 5). This is repeated at a somewhat
faster speed and then a third time, where the subject is asked
to take a deep breath and read as fast as possible (while the
text scrolls from right to left at a high speed). Finally, test 7
requires the subject to sustain the ‘‘aahhhh’’ sound for
several seconds; in this part of the reading test, the sequence
is shown on the screen with an arrow underneath scrolling
from left to right, indicating how long to read the sound
(final screenshot in Figure 5).

As shown in Figure 4, the speech recording undergoes
an ‘‘SNR calculation and threshold comparison’’ phase that
is intended to ensure that the recording is of sufficient
quality (as described in Section IV-B). If the quality is
sufficient, the recording is then transmitted to a remote
server for further processing (a diagnostic applicationwithout
server/network reachability could perform these processing
steps also directly on the mobile device). If the quality
is not sufficient, the subject is requested to repeat the data col-
lection, possibly adjusting the microphone, speaking louder,
or moving to a quieter location. In our case study, for sim-
plicity, we discarded an entire test category if the SNR
was too low on average for that category. As a conse-
quence, on average 1.5 tests (out of the seven categories)
were discarded per subject. A less rigorous approach could
discard only those portions of a test category that have a
low SNR, thereby increasing the amount of data usable for
analysis.

Once a recording of sufficient quality has been obtained,
it is processed as shown in Figure 6. First, as described
in Section IV-C, automatic speech recognition techniques
are used to detect boundaries of linguistic entities. This
is followed by a feature extraction step as described in
Section IV-D. In our current implementation, all features

are extracted using the open-source CMU Sphinx speech
processing toolkit [74]–[76]. If the features are extracted
for research purposes only, they can now be evaluated and
analyzed. For diagnostic purposes, the features would then
be compared to the features from the same subject’s baseline
recording (stored in a database) and the subject could be
classified as either concussed or not.

B. DATA COLLECTION
We used the application described in the previous section to
perform a data collection during August and December 2014,
with the goal of obtaining sufficient recordings to
analyze the acoustic features described in Section IV-D.
We performed a population-based case-control study com-
posed of high school and collegiate athletes participating
in sports with high concussion rates. In total, 47 schools in
the Midwest (Illinois, Indiana, Michigan) and Pennsylvania
agreed to participate in this effort; note that neither subjects
nor physicians and athletic trainers (ATs) received incentives
and all participation was voluntary. Each school was visited
by one of our group members to train physicians and ATs in
the use of the application and to perform baseline testing at
the beginning of the school year or athletic season. Overall,
more than 2,500 youth athletes enrolled in our study and
were baselined. During baseline testing, the subjects were
asked to fill out a questionnaire, including information such
as age, gender, concussion history, and other current or prior
health conditions. All files associated with an athlete were
stored on the device tagged by a one-way hash applied to
the athlete’s name for unique, but anonymized identification.
Since the samemobile deviceswere used to collect recordings
from multiple subjects, a roster management system was also
added to the application to make it easier for the physicians or
ATs to administer the test and to ensure that speech recordings
and other data are associated with the appropriate subjects.
After each athletic event (training session or competition),
ATs randomly selected a few of the subjects for testing.
In addition, whenever a concussion was suspected or
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FIGURE 6. Server-side architecture of data collection application.

confirmed (e.g., by a physician or using traditional
concussion testing tools), the test was also administered.

The subjects used for our study are summarized in Table 5.
Note that out of the 2,500 subjects, since students were
selected randomly for post-baseline data collection, many
subjects have only provided a baseline recording and can
therefore not be used for the analysis. From the remaining
subjects, i.e., subjects with at least two recordings (baseline
and an additional recording at a later time), several more
were eliminate due to noise and other quality issues. In total,
for the remainder of this paper, we focused on 580 subjects,
95 of them with a confirmed concussion and 485 control
subjects. Themale:female ratio was about 4.6:1, whichwas as
expected given that many contact sports are ‘‘male-centric’’.
Table 5 also summarizes a few other relevant information that
was captured, e.g., the questionnaire asked subjects if they
have any current orthodontic treatment, so that we know if
the participants might be under the influence of tooth or jaw
correction (dental) treatment, e.g., braces etc., as this may
influence the way they speak. They were also asked if they
have any speech impediments such as stuttering and learning
disorders such as dyslexia.

C. DATA ANALYSIS
Given the data set obtained through the data collection study
with the youth athletes, the next step is to analyze the various
acoustic features for their suitability as concussion biomark-
ers. One of the main challenges of our data set is the risk of
over-fitting, i.e., our data set has a large number of param-
eters relative to the number of observations. Since we are
investigating 38 different vocal features, logistic regression
modeling, which is a standard method of predicting and
explaining a binary response variable, was used to identify

TABLE 5. Study participants.

the most promising features. First, we standardize the data
set such that each feature is Gaussian with mean µ = 0 and
standard deviation � = 1; then the standard (or z-scores) are
computed as follows:

z = x � µ

�
. (3)

Next, we classify the data sets as either concussed or
non-concussed to complete the reduction to a regression
problem. The data set still has many ‘‘holes’’, because most
recordings were imperfect, i.e., even though their overall
SNR was satisfactory to accept a recording, various compo-
nents of a test may still have to be discarded due to excessive
noise. Therefore, the data set needs to be filled in using a
data imputation method. Toward this end, we use the Sparco
toolbox,5 which is an open-source framework inMatlab, used
for testing and benchmarking algorithms for sparse recon-
struction.
After imputation, we now have a normalized data

matrix and we use elastic net regularization for generalized

5http://www.cs.ubc.ca/labs/scl/sparco/
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TABLE 6. Lasso predictor matrix.

linear model regression using Lasso GLM (Generalized
Linear Models) in Matlab,6 which combines the L1 and
L2 penalties of the Lasso and Ridge regression methods [77].
Lasso automatically selects the more relevant features and
discards the others, whereas Ridge regression never fully
discards any features. Elastic net regularization is kind of
a hybrid of Ridge regression and Lasso regularization; like
Lasso, elastic net regularization can generate reduced models
by generating zero-valued coefficients. Elastic net regulariza-
tion was primarily chosen because empirical studies suggest
that it can outperform Lasso on data with highly correlated
predictors [78]. For an ↵ strictly between 0 and 1 and a
nonnegative �, elastic net regularization solves the following
problem:

min
�0,�

(
1
N
Deviance(�0, �) + �P↵(�)), (4)

where

P↵(�) = (1 � ↵)
2

||�||22 + ↵||�||1 (5)

=
pX

j=1

(
(1 � ↵)

2
�2
j + ↵|�j|). (6)

6http://www.mathworks.com/help/stats/lasso.html

When↵ = 1, elastic net regularization behaves like Lasso; for
other values of↵, the penalty termP↵(�) interpolates between
the L1 norm of � and the squared L2 norm of �. As ↵ shrinks
toward 0, elastic net regularization approaches the behavior
of Ridge regression. To avoid overfitting, we cannot have
fewer than 10 samples per feature given our 95 concussed
recordings, i.e., in order to obtain stable results for logistic
regression modeling, the data must contain at least 10 events
(i.e., concussions) for every predictor variable included in the
model. We are further using a 10-fold cross validation for
our evaluations. In summary, using elastic net regularization
(or Lasso GLM), we minimized overfitting of our data set
and are now able to obtain the maximum-likelihood fitted
coefficients, and thereby predictors, for the concussed/control
classification problem. Table 6 shows the acoustic features
(including the test categories fromwhich they were extracted)
that were evaluated and their resulting predictor values. The
features shown in bold (and with non-zero predictor value)
are the ten features that were selected by the elastic net
regularization approach. Using these values, we can now
determine an ROC curve as displayed in Figure 7, showing
the true and false positives for the combination of the
ten features described above. Assuming that we want to
obtain a false positive rate of no more than 30%, the
corresponding sensitivity of 70% can be obtained. While
these results clearly show a correlation between concus-
sions and some of the acoustic features investigated, these
results are at this point insufficient to develop a speech-based
concussion diagnostic tool. However, these preliminary
investigations have ignored a variety of characteristics of
the data set, which require further investigation, including
the impact of confounders, the impact of the time interval
between concussive event and recording, the various lev-
els of severity of concussions, the number and severity of
the symptoms experienced by the subject, the location of
the concussive hit on the head, the results of other con-
cussion assessment tests performed, etc. Using careful data
stratification and regressionmodeling, wewill further investi-
gate these contextual information to maximize the confidence

FIGURE 7. Sensitivity and specificity.
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in our results and also to detect additional patterns in the
speech data.

VI. DISCUSSION
The focus of the data collection described in the previ-
ous section was on obtaining a better understanding of the
relationship between brain injuries and speech, which will
be essential for the future development of diagnostic and
assessment tools based on speech. As a diagnostic tool,
a speech assessment app developed for a mobile device can
be used directly at the sidelines of a sport event whenever
a concussion is suspected or in the locker rooms after a
sport event, e.g., to perform routine assessment. The data
collections described in the previous section were performed
either outdoors (at the sidelines) or indoors in a gym or
locker room and therefore reflect the same environments
(e.g., crowd noise) we expect to encounter when using the
app for actual real-time diagnosis. A number of variables
require further investigation, e.g., the optimal time between
suspected concussive hit and test is yet unknown. In our
data sets, concussed athletes were tested about 30 minutes
(on average) after a concussive hit, with the shortest time
interval being 1 minute and the largest 4 hours. While our
initial results indicate that a concussion’s impact on speech
appears to be immediate, in order to increase accuracy,
a certain minimum delay (rest) may be required to minimize
the impact of exhaustion or shortness of breath.

VII. CONCLUSIONS AND FUTURE WORK
This paper describes a series of challenges experienced in the
design and development of a speech-based data collection
tool, as well as the use of this tool for a large-scale data
collection effort among youth athletes. Unlike many other
types of data, speech collection, processing, and analysis
pose various unique challenges that require careful design
choices and evaluations to ensure that data collection will
provide recordings of the highest quality possible. While
speech has received an increasing amount of attention as
potential health biomarker in the recent past, further analy-
ses remain to be done to validate its potential as biomarker
and assessment tool. The focus in prior work has been on
demonstrating the relationships between neurodevelopmental
and neurodegenerative conditions and various vocal features.
The work presented in this paper not only focuses on a larger
and much more varied combination of vocal features than
prior work, but also addresses the challenges in building and
designing appropriate speech data collection tools and ulti-
mately speech-based diagnostic and assessment tools. While
our current results are encouraging and indicative of a strong
link between brain injury and speech, there are challenges
that remain to be addressed. For example, as previously men-
tioned, the enormous data set resulting from our 2014 data
collection still requires further data cleansing and processing
to ensure that analysis will provide the most reliable insights
possible. Statistical analysis and machine learning research
has resulted in various tools to evaluate the significance of

various features and future work will continue to evaluate
the most promising techniques given the nature of our data.
The list of acoustic features used in this work is already
38 items long, but is still expected to grow, e.g., we are
exploring techniques to produce a ‘‘similarity score’’ between
two recordings (baseline and post-event), which may further
lead to new insights. Finally, the ultimate goal will be to
design and develop diagnostic tools based on our insights and
to expand this research into other areas of neurology besides
concussions.
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