Example-Based Query to Identify Causes of Driving Anomaly With Few Labeled Samples

THE UNIVERSITY OF TEXAS AT DALLAS

Yuning Qiu, Teruhisa Misu, Carlos Busso

Motivation

Background:

- Unsupervised driving anomaly detection can identify deviation from normal driving conditions
- A challenge with unsupervised models is the lack of interpretability

Our Work:

- Introduce an example-based query method to interpret the causes of driving anomalies
- The approach only needs a few examples per cause, creating a powerful tool for unsupervised models
- No need to define particular abnormal driving styles

Driving Anomaly Dataset

- Naturalistic urban driving recordings (84 hours)
- Collected by Honda Research Institute Inc. (HRI), with a car driving in an urban city
- Road conditions recorded by with a forward-facing camera
- The data has manual annotations of driving events

Example-Based Query Model

Formulation:

- Feature embedding extracted from an unsupervised model
- Abnormal driving segments with the highest scores are manually labeled
- Pedestrian, bicyclist, motorcyclist, other cars, and bad driver maneuvers
- Select few examples per class to be used as prototypical anchors
- Interpret the causes of query driving segment according to the k nearest anchors (Multi-label k nearest neighbor (ML-KNN)^[1]

Model Performance

Unsupervised driving anomaly detection system:

Self-attention based model^[2]

BeatGAN model^[3]

 $x_{Pedestrian}$

 $x_{Bicyclist}$

 $x_{Vehicle}$

Experimental results:

- Single-label evaluation
- Retrieval Accuracy: the proportion of correct predictions
- Multi-label evaluation
- HL: Hamming loss
- RL: Ranking loss
- AR: Average precision
- RA: Retrieval accuracy

	SVM	LR	RF	ML-KNN
Attention Model				
(Embedding)	33.3%	29.6%	$26.9\% \ (0.032)$	54.8 %
Attention Model				_
(Attention Weights)	23.0%	27.4%	$27.9\% \ (0.029)$	71.1%
BeatGAN				
(z Embedding)	31.1%	31.61%	30.71% (0.031)	62.2%
			<u> </u>	

Feature	Metric	Value of k							
		11	12	13	14	15	16	17	
Attention Model	$\mathrm{HL}\ (\downarrow)$	0.439	0.413	0.384	0.412	0.416	0.388	0.415	
(Embedding)	$\mathrm{RL}\ (\downarrow)$	0.501	0.462	0.448	0.443	0.485	0.480	0.492	
	$AP (\uparrow)$	0.502	0.509	0.543	0.538	0.517	0.503	0.5	
	$RA (\uparrow)$	0.319	0.319	0.430	0.548	0.467	0.415	0.356	
Attention Model	$\mathrm{HL}\ (\downarrow)$	0.350	0.339	0.302	0.382	0.283	0.287	0.370	
(Attention Weights)	$\mathrm{RL}\ (\downarrow)$	0.339	0.313	0.299	0.362	0.330	0.314	0.329	
	$AP (\uparrow)$	0.582	0.608	0.683	0.604	0.684	0.690	0.542	
	$RA (\uparrow)$	0.533	0.563	0.593	0.378	0.644	0.615	0.711	
BeatGAN	$\mathrm{HL}\ (\downarrow)$	0.425	0.390	0.341	0.397	0.450	0.542	0.391	
(z Embedding)	$\mathrm{RL}\ (\downarrow)$	0.403	0.394	0.362	0.347	0.442	0.477	0.438	
	$AP (\uparrow)$	0.450	0.498	0.564	0.506	0.450	0.406	0.522	
	$RA(\uparrow)$	0.356	0.429	0.540	0.622	0.452	0.363	0.511	

Conclusions

- Similar anomalies cluster together in the unsupervised embeddings
- The proposed approach:
- uses few anchors to improve interpretability.
- is flexible to different unsupervised systems
- provides a possible solution for automatic annotation of databases
- References:

[1] M. Zhang and Z. Zhou. 2007. "ML-KNN: A lazy learning approach to multi-label learning". Pattern Recognition 40, 7 (2007), 2038–2048 [2] Y. Qiu, T. Misu and C. Busso, "Unsupervised Scalable Multimodal Driving Anomaly Detection." in IEEE Transactions on Intelligent Vehicles (2022)

[3] B. Zhou, S. Liu, B. Hooi, et al. "BeatGAN: Anomalous Rhythm Detection using Adversarially Generated Time Series", IJCAI. 2019: 4433-4439.