

Detecting sleepiness by fusing classifiers trained with novel acoustic features

Tauhidur Rahman
Soroosh Mariooryad
Shalini Keshavamurthy
Gang Liu
John H.L. Hansen
Carlos Busso*

Multimodal Signal Processing (MSP)
Center for Robust Speech Systems (CRSS)
The University of Texas at Dallas

Introduction

About Sleepiness

- It results from mental or physical fatigue, strain and exhaustion
- It impairs cognitive abilities, reducing the efficiency to perform operationally relevant tasks

Why is Sleepiness Detection?

- In-car technologies to prevent car accidents
 - 22-24% of car accidents occur due to sleepy drivers [Klauer et al., 2006]
- > Studying sleep disorders
- Designing Human-Machine Interfaces

Approach

Goal

- Detecting sleepiness from speech
 - > It can be captured from nonintrusive sensors

Approach

- Evaluate novel acoustic features for detecting sleepiness
 - Likelihoods from reference neutral models
 - Statistics of F0 contour across voiced segments
 - PMVDR+SDC
- Decision level fusion of individual classifiers
 - ➤ INTERSPEECH 2009 Emotion Challenge (41.7% -> 44.0%) [Schuller et al., 2011b]

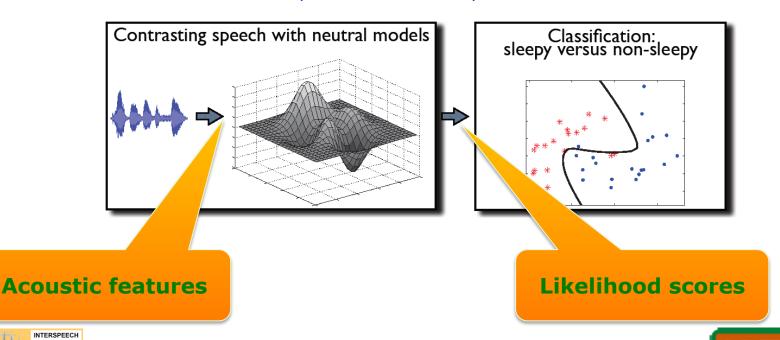
Database

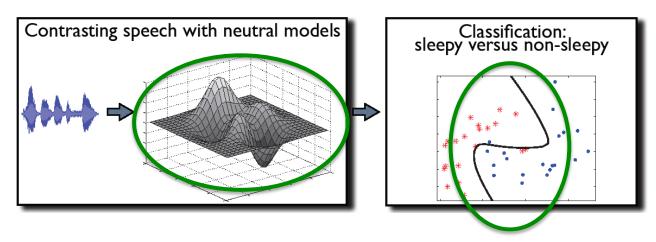
This study uses Sleepy Language Corpus (SLC)

- 21 hours of speech from 99 participants (9089 turns)
- Recordings in a realistic car-environment or in a lecture room
 - Isolated vowels
 - Read speech
 - Commands/requests
 - Spontaneous speech
- Karolinska sleepiness scale (1 -extremely alert to 10 extremely sleepy)
 - Above 7.5 is considered sleepy (SL)
- Divided speaker independently into three groups:
 - Training (~40%), Development (~30%), Testing (~30%)

Baseline SVM System (λ_B)

- A baseline classifier is trained as reference [Schuller et al., 2011a]
- Linear kernel support vector machine (SVM) with sequential minimal optimization (SMO)
- > INTERSPEECH 2011 feature set:
 - > 59 Low-Level Descriptors
 - > 33 base functionals and 6 F0 functionals
 - ➤ Altogether: 4368 sentence level features
- Synthetic Minority Oversampling Technique (SMOTE)

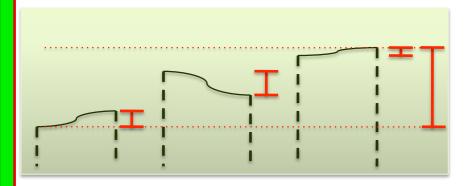


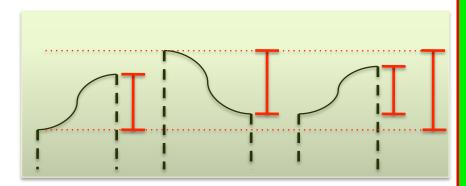

Likelihoods from reference neutral models (λ_L)

- Quantify deviations from neutral speech [Busso et al., 2007,2009]
 - Train models with neutral speech
 - > Use likelihoods (fitness measure) as features for classification

Likelihoods from reference neutral models (λ_L)

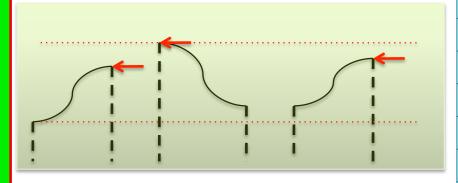
- Neutral Models based on Gaussian Mixture Models (GMMs)
 - > 4 mixtures for each of the 4368 sentence level features
 - Wall Street Journal-based corpus
- Linear Kernel SVM trained on Likelihoods of the models

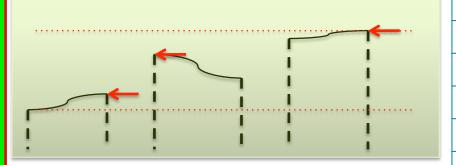




System based on voiced segment statistics (λ_{F})

- Basic functionals such as range, maximum, quartiles, slope, curvatures are estimated over voiced segmented regions. [Busso et al, 2009]
- For each sentence, functionals are estimated again across these voiced segment statistics
- Provide insights about local dynamics of the pitch contour
- Linear Kernel SVM




Example, mean of voiced segments ranges

System based on voiced segment statistics (λ_F)

STATISTICS OF THE VOICED REGION

Mean of the voiced segment ranges

Mean of the voiced segment maximums

Mean of the voiced segment minimums

Mean of the voiced segment lower quartiles

Mean of the voiced segment upper quartiles

Mean of the voiced segment interquartile ranges

Mean of the voiced segment slopes

Mean of the voiced segment curvatures

Mean of the voiced segment inflexions

Max. of the voiced segment slopes

Max. of the voiced segment curvatures

Max. of the voiced segment inflexion

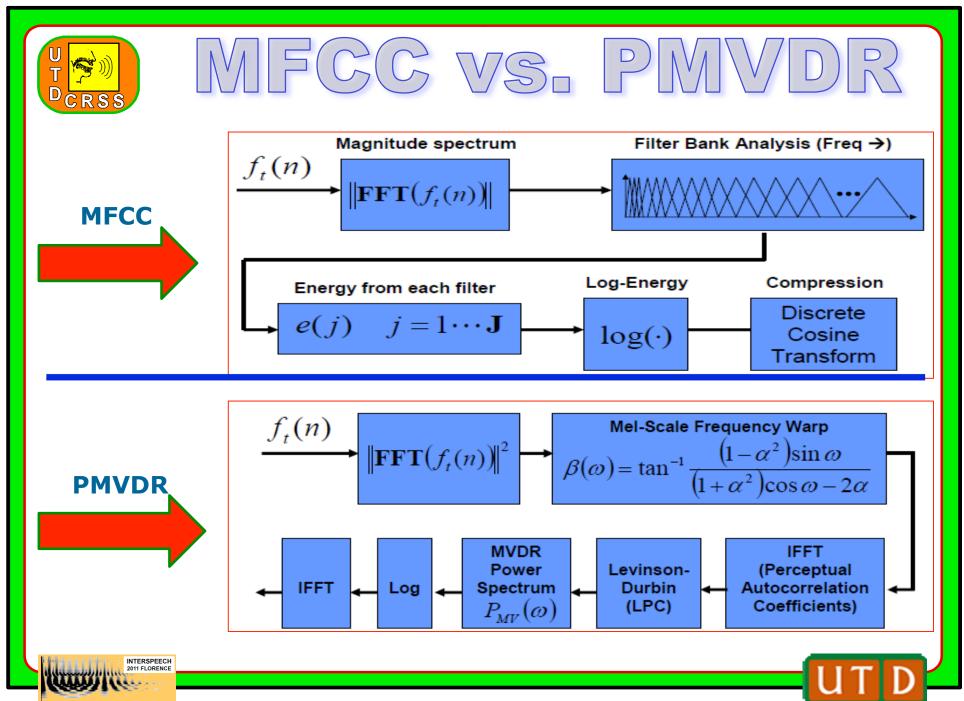
Max. of the voiced segment mean

Std. of the voiced segment means

Std. of the voiced segment slopes

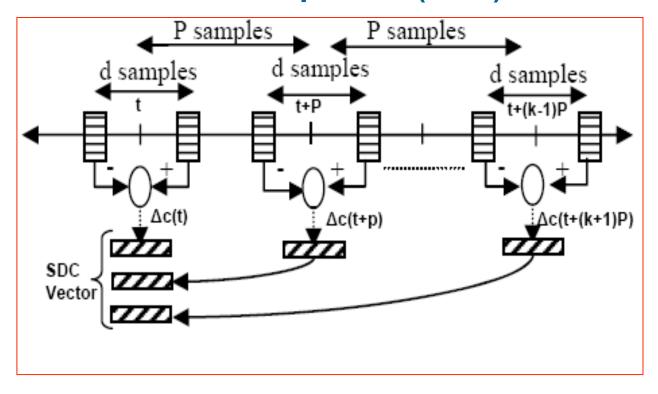
Std. of the voiced segment curvatures

Std of the voiced segment inflexions



GMM trained with PMVDR & SDC (λ_{P})

- Perceptual Minimum Variance Distortionless Response (PMVDR)
 - PMVDR is able to better model the upper spectral envelope than MFCC
 - Robust against noise
 - > 10-dimensional PMVDR feature vector
- Shifted Delta Cepstrum (SDC)
 - > SDC incorporates additional temporal information



Shifted delta cepstrum (SDC) N-d-P-K

11-1-3-3

- A GMM is trained frame by frame (PMVDR & SDC)
 - Normalized sum of the likelihoods at the sentence level

GMM trained with MFCCs (λ_{M})

- 12 MFCC coefficients and their delta and delta-delta
- GMM is trained

Performance individual classifiers

Performance of Sleepiness Detection Systems – on the Development set:

Classifier	%WA	%UA	% Recall	%Precision	Class	
λ_{B}	70.7	67.5	80.1	75.1	NSL	
Baseline	70.7	07.0	54.8	58.1	SL	
λ_{L}	66.7	64.0	74.0	73.2	NSL	
Likelihoods	00.7	04.0	53.9	54.9	SL	
$\lambda_{\scriptscriptstyle extsf{F}}$	E0 6	57.5	31.1	76.6	NSL	
VS-statistics	50.6	57.5	83.9	41.7	SL	
λ_{P}	59.5	59.3	67.1	70.3	NSL	
PMVDR & SDC	59.5 59.5	J9.J	39.3	51.8	48.1	SL
λ_{M}	61.4	57.3	64.9	68.7	NSL	
MFCC	61.4	37.3	49.8	45.4	SL	

Motivation for fusion

$$Q_{ij} = \frac{N_{11}N_{00} - N_{01}N_{10}}{N_{11}N_{00} + N_{01}N_{10}}$$

Classifier	λ _L Likelihoods	λ _B Baseline	λ _F VS-statistics	λ _P PMVDR & SDC	λ _M MFCC
λ _L Likelihoods	1.000	0.8689	0.2451	0.3705	0.7911
λ _B Baseline		1.000	0.1854	0.4904	0.8272
λ _F VS-statistics			1.000	0.0322	0.4754
λ _P PMVDR & SDC				1.000	0.4360
λ _M MFCC					1.000

Classifiers with Different Characteristics

Fusion

Feature Level

- > 7812 features
 - Baseline features
 - Likelihood features
 - > F0 statistics
- Linear kernel SVN with with Sequential Minimal Optimization (SMO)
- Chi-squared feature selection technique

Features #	%WA	%UA
7812(all feature)	66.20	65.25
5000	68.20	66.90
3000	68.00	67.40
1000	63.30	64.00

%UA

67.5

%WA

70.7

Classifier

λ_B Baseline

Fusion

Decision Level

Maximum Likelihood Decision

$$\hat{\omega} = \underset{\omega_{\theta}}{\operatorname{argmax}} P(\omega_{\lambda_{1}}, \omega_{\lambda_{2}}, \dots, \omega_{\lambda_{n}} | \omega = \omega_{\theta})$$

$$= \underset{\omega_{\theta}}{\operatorname{argmax}} \frac{P(\omega_{\lambda_{1}}, \omega_{\lambda_{2}}, \dots, \omega_{\lambda_{n}}, \omega = \omega_{\theta})}{P(\omega = \omega_{\theta})}$$

Hard Decisions

$$\omega_{\lambda_i} \in \{SL, NSL\}$$

Soft Decisions

$$\omega_{\lambda_i} = P(\omega = SL)$$

Fusion: Results

	ISI	On	Lev	

- > Train Set
 - Training the Models
- Development Set
 - ▶ 90% Training Fusion
 - > 10% Test
 - ➤ 10-fold Cross Validation

 $\begin{array}{l} \lambda_L \text{ Likelihoods} \\ \lambda_B \text{ Baseline} \\ \lambda_F \text{ VS-statistics} \\ \lambda_P \text{ PMVDR & SDC} \\ \lambda_M \text{ MFCC} \end{array}$

Classifier	%WA	%UA
λ _B Baseline	70.7	67.5

Classifier	Hard fusion %WA %UA		Soft fusion %WA %UA	
λ _B , λ _L	69.3	67.5	65.8	64.1
$\lambda_{\text{B}}, \lambda_{\text{L}}, \lambda_{\text{F}}$	68.9	68.2	67.1	66.6
λ_{B} , λ_{L} , λ_{M}	69.5	68.1	69.1	67.8
λ_{B} , λ_{L} , λ_{P}	70.4	68.3	68.9	68.2
λ_{B} , λ_{M} , λ_{P}	69.5	67.0	70.6	68.3
λ_{B} , λ_{L} , λ_{F} , λ_{P}	70.1	68.1	67.9	67.2
λ_{B} , λ_{L} , λ_{M} , λ_{P}	70.1	68.2	70.2	68.7
λ_{B} , λ_{L} , λ_{F} , λ_{M} , λ_{P}	68.8	67.1	68.9	67.7

Fusion: Results

Decision Level

- Train Set
 - Training the Models
- Development Set
 - Estimate conditional probabilities (soft decision)
- Test Set
 - Evaluation

	Schuller et al., 2011a [%]	λ _Β , λ _{L,} λ _{M,} λ _p [%]	Δ [%]
%WA	73.0	74.1	+1.1
%UA	70.3	71.0	+0.7

Conclusions

- Sleepiness can be detected using acoustic feature
- Feature level fusion was not as effective as late fusion
- Late-fusion strategies on hard and soft decisions are opted to improve the accuracy of individual classifiers
- ♦ Best Performance on testing set: 71.0% (UA)

Thanks

Questions?

References

- S.Klauer, T.Dingus, V.Neale, J.Sudweeks, and D.Ramsey, "The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data," National High- way Traffic Safety Administration, Tech. Rep., 2006.
- B. Schuller, S. Steidl, A. Batliner, F. Schiel, and J. Krajewski, "The INTERSPEECH 2011 speaker state challenge," in Inter- speech 2011. Florence, Italy: ISCA, August 2011.
- B. Schuller, A. Batliner, S. Steidl, and D. Seppi, "Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge" Speech Communication 53 (9-10): 1062-1087 (2011).
- C. Busso, S. Lee, and S. Narayanan, "Analysis of emotionally salient aspects of fundamental frequency for emotion detection," IEEE Transactions on Audio, Speech and Language Processing, vol. 17, no. 4, pp. 582–596, May 2009.
- C. Busso, S. Lee, and S. Narayanan, "Using neutral speech models for emotional speech analysis," in Interspeech 2007 Eurospeech, Antwerp, Belgium, August 2007, pp. 2225–2228.

Q statistic

$$Q_{ij} = \frac{N_{11}N_{00} - N_{01}N_{10}}{N_{11}N_{00} + N_{01}N_{10}}$$

 N_{11} : is the number of both classifiers making the correct classification

 N_{10} : is the number of y_i being correct and being y_j incorrect

 N_{01} : is the number of y_i being incorrect and being y_j correct

 N_{00} : is the number of both classifiers making the incorrect classification

