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Conclusions 

  Emotional models and classifiers do not generalize with 
mismatched conditions (training and testing) 
  Speaker dependent models give better performance than 
Speaker independent models [Austermann et al. 2005] 

  The challenge is to build a robust classifier that can recognize 
the expressive speech of unseen speakers 
 The goal of this study is to adapt an emotion recognition 
system to a target user  

  An intriguing approach is the use of feature and/or model 
adaptation for emotion recognition [Kim et al., 2011] 

  Realistic recordings from a popular video sharing website 
  Data from a speaker during various uncontrolled conditions 
  Unbalanced data, environmental conditions, different ages  

  90 minutes of speech from one speaker (837 5 sec files) 
  3 subjects annotated the data [0 neutral - 1 emotional] 

  The emotion detection system trained with IEMOCAP data 

  IEMOCAP database [Busso et al. 2008] 

 ~12 hours of data, Read, scripted and spontaneous 

  Happiness, sadness, anger, neutral, etc.  

  Activation, valence and dominance 

  Neutral versus emotional speech  

  Classes are balanced during training testing 

Optimal normalization: 
  Normalization parameters are estimated from neutral subset 

  Parameters are applied to the entire emotional corpus 

  Variability between emotional classes is preserved 

  Parameters are estimated only from the normal set 

  Assumptions: 

  A portion of neutral speech from each speaker is available 

  Speaker Identity in the corpus is known 

  The proposed front-end framework is able to reduce the 
mismatches in the training and testing conditions 
  The approach is demonstrated in controlled and in 
uncontrolled recording conditions 
  2% improvement (UA) with IEMOCAP database 
  20% improvement (UA) with realistic recordings 

  Model adaptation for emotion recognition 
  Coupled with the proposed front-end unsupervised 
feature normalization scheme 

  Explore different applications 
  Automatic call center, emotional profile of individuals  
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IFN Approach: 
  Classify speech as emotional or neutral 
  Use neutral samples to estimate normalization parameters 
  Repeat “n” times (or until the labels do not change) 

Implementation: 
  Z normalization  

  384 sentence level features (Interspeech 2009 emotion challenge)  
  Linear kernel SVM with sequential minimal optimization (SMO) 

Ac#va#on	  

Valence	  

0.5	  0.6	  

Normalization Weighted Accuracy (%)

Without Normalization 69.81

IFN 71.81

Perfect Normalization 72.75

WA(%) UA(%)

Without Normalization 36.32 50.76

Unsupervised Feature Adaptation 80.28 70.02

WA:  Weighted Accuracy                                UA:   Unweighted Accuracy    
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