Speech-Driven Animation Constrained by Appropriate Discourse Functions

Annotation

1. Multimodal Signal Processing (MSP) Laboratory 2. Human Language Technology Research Institute Erik Jonson School of Engineering & Computer Science University of Texas at Dallas

MOTIVATION

Background:

- Rule-based:
- + defining rules for behaviors based on the contextual information
- repetitive behaviors

UT DALLAS

- desynchronization between gestures and speech

Speech-driven:

- + use of prosodic features to model behaviors
- + modeling emphasis, emotion, and timing of behaviors
- may not properly respond to the underlying discourse functions in the dialog

Proposed Solution:

Create a bridge to fill the gap between speech-driven and rule-based systems

IEMOCAP	corpus

- Dyadic interactions
- 1st session (1 male, 1 female)
- Motion capture data (head, and eyebrow motions)
- Audio: F0 contour, and Intensity

Statistical Analysis (MEAN)

Question vs. Non-Question			
Pitch	F(1,452)=8.58	p=0.004	
Roll	F(1,452)=7.05	p=0.008	
Pitch Velocity	F(1,452)=7.05	p=0.008	
Affirmation vs. Non-Affirmation			
LBRO3	F(1,464)=7.87	p=0.005	
RBR03	F(1,464)=10.42	p=0.001	
Pitch Velocity	F(1,464)=6.74	p=0.0097	
Negation vs. Non-Negation			
Yaw	F(1,419)=5.17	p=0.023	
Pitch Velocity	F(1,419)=4.99	p=0.026	
Statement vs. Non-Statement			
Pitch Velocity	F(1,470)=4.30	p=0.038	

METHOD

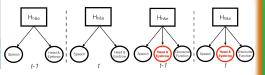
Selection of discourse function

is inspired by previous studies

[Poggi et al., 2005; Marsella et al., 2013]

Discourse functions:

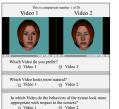
affirmation (90)


negation (53)

question (112)

statement (158)

Speech Driven Models Using DBN


- Xface toolkit (compliant with MPEG-4 standard)
- Speech: prosody features
- Head & Eyebrow: Joint configuration of Head and Eyebrow [Mariooryad et al., 2013]
- Discourse function: A binary variable representing the discourse function
 - Training: full observation
 - Testing: partial observation

RESULTS

Subjective Evaluation (MTurk)

- Focus on question and affirmation
- Original, jDBN3, C-jDBN3
- 20 different videos
- Pairwise comparison (60)
- 3 evaluators per comparison

Constraint is "Question" (1) Constraint is "Question" (2) (1) (2) (1) (2) (1) (2)</

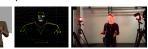
Which video do you prefer?

" "Question"

- 56% preferred C-jDBN3 over jDBN3
- 95.5% probability that this proportion is greater than chance
- Similar results for other questions

"Affirmation"

- Direct comparison
- 57% preferred jDBN3 over CjDBN3
- Indirect comparison
- C-jDBN3 closer to original videos
- Similar results for other guestions


DISCUSSION

Conclusions:

- The statistical analysis demonstrated significant changes in behaviors across different discourse functions
- For "Question" we see more preference for CjDBN3, while for "Affirmation" the results are not conclusive
- Perception of head motion dominate the evaluation
- "Affirmation" constraint is less effective since affects eyebrow

Future Work:

- We need more data to further explore this research direction
- Better talking heads

References:

S. Mariooryad and C. Busso. Generating human-like behaviors using joint, speech-driven models for conversational agents. IEEE Transactions on Audio, Speech and Language Processing, 20(8): 2329-2340, October 2012.

