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Motivation
•  Creating naturalistic nonverbal behaviors is important for 

conversation agents (CAs)

•  Animations 

•  Entertainment

•  Virtual reality

•  More than 90% human gestures occur while speaking

•  Complex relationship between gestures and speech

•  Cross modality interplay 

•  Synchronization

maxresdefault.jpg

ICT-USC



msp.utdallas.edu 3

Previous studies on co-verbal gesture 
synthesis

•  Rule based frameworks [Cassell et al., 1994; S. Kopp 2006]

+  Define rules based on the semantics 

-  Synchronization is challenging

-  The variation is limited

•  Speech prosody driven systems [Levine et al., 2010; Busso 
et al. 2007]

+  Learn movements and their synchronization from recordings 

+  Capture the variation in the data

-  Disregard the context

•  Combination of data driven and rule based methods [Stone 
et al. 2004, Marsella et al. 2013, and Sadoughi et al. 2014]

+  Utilizing the advantages and overcoming the disadvantages 

Rule-Based

Speech 
Driven
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Previous studies using both 
approaches

•  Stone et al., [2004]

•  Search for combination of speech and motion units with 
similar meaning to speech and planned behaviors

•  Marsella et al., [2013]

•  Create appropriate gestures depending on the 
communicative goal of the utterance

•   Use speech prosody features to capture the stress and 
emotional state of the speaker

•  Sadoughi et al., [2014]

•  Constrain a speech driven animation model based on 
semantic labels (e.g., Question and Affirmation)

Si, Mi

Sk, Mk

phrase p phrase p+1
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Our Vision

•  Creating a bridge between rule based systems and data 
driven framework

•  SAIBA framework [Kopp et al., 2006]:

•  Considering the target gesture for synthesis is known

•  Synthesizing behaviors that are timely aligned and coordinated 
with speech

•  Synthesizing behaviors that convey the right meaning
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Rule-based systems Data-driven systems

Intent Planning Behavior Planning Behavior Realization
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Objective of This Study

Annotating 
few samples 
of a 
prototypical 
gesture

Retrieving 
similar 
gestures to 
the examples

Training the 
Behavior 
Realization 
model
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Goal:
Retrieve 

examples of 
prototypical 

gestures
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Gesture Segmentation and Classification

•  Kovar et al. [2004]

•  Find gestures similar to a target gesture using DTW and use retrieved 
samples to expand the training samples

•  Joshi et al. [2015]

•  Train a random forest model using video and depth map of the joints

•  They use a multi-scale window sliding for new data (forward search).  

•  Zhou et al. [2013]

•  Hierarchical aligned cluster analysis (HACA) to dynamically segment and 
cluster motion capture data into movement primitives
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Gesture Detection

Segmentation Detection
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MSP-AVATAR Corpus

•  Multimodal database comprising:

•  Motion capture data

•  Video camera

•  Speech recordings

•  Four dyadic interaction between actors

•  We motion captured one of the actors

•  Database rich in terms of discourse functions

8
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Discourse Functions in MSP-AVATAR 
corpus

•  Discourse functions that elicit 
specific gestural behaviors 

•  Selection guided by previous studies

•  Poggi et al [2005]

•  Marsella et al. [2013]

•  2-5 scenarios per discourse function

•  We used the recordings from one 
of the actors (66 mins)
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MSP - CRSS!

Prototypical Behaviors
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To-FroSo-What Regress

So-What To-Fro Regress Nods Shakes
Samplestrain 14 27 26 24 27

Samplestest&developing 21 29 73 138 115

Nods Shakes
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Gesture Retrieval Framework 
Overview

•  Temporal reduction

•  The data is captured by 120 fps, and may have redundant 
information 

•  Gesture segmentation

•  Gestures can happen with arbitrary durations

•  Gesture detection

•  Binary decision per segment 
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Temporal Reduction

•  Reduce the complexity of the system

•   Inspired by Zhou et al. [2013]

•  Non-uniform downsampling

•  Based on Linde-Buzo-Gray vector quantization (LBG-VQ)

•  Discard consecutive frames up to 5 frames if they are in the same cluster
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Gesture Segmentation

•  Window size (Lw)

•  Minimum length of search segment (Lmin) 

•  Maximum length of search segment (Lmax)

•  Increment frames between iterations 

•  Δ = (Lmax - Lmin)/30

•  One winner per window 
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Gesture Detection

•  One-class SVMs 

•  Efficiently  reduce the number of 
candidates

•  Dynamic time alignment kernel 
(DTAK)

•  To increase precision

One-Class 
SVMs

DTAK

If Y
=

1
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One-Class SVMs

•  Only positive samples

•  Limited number of training 
instances

•  Train separately for different features

•  Fuse the classifiers using the AND 
operator

•  Feature selection by cross-
validation 

•  Sort features according to accuracy 

•  Remove one by one to get accuracy>0.85
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DTAK by Zhou et al. [2013]

•  DTAK finds similarity between two segments regardless of 
their length in term of a kernel (Gaussian)

•  Final score: the median of the similarity measure to the 
training examples

•  Find a threshold by maximizing the F-score on the developing 
set
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Gesture Test & Developing 
Sessions

Precision
[%]

Recall
[%]

Head Shake 95.65 42.31

Head Nod 87.10 61.36

To-Fro 67.86 67.86

So-What 76.92 47.62

Regress 78.85 57.75

Evaluation of Retrieved Gestures

•  Precision in head gestures > 0.85

•  Precision in hand gestures > 0.59

•  Head vs. hand gestures:

•  Less complex Gesture 19 
Sessions
Precision

[%]
Head Shake 91.32

Head Nod 85.04

To-Fro 59.52

So-What 76.68

Regress 71.77
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Analysis of Gestures vs. Discourse 
Functions

•  The histograms of the discourse functions vs. behaviors

•  Different gestures appear with different frequencies across different discourse 
functions

•  Shakes happen in Negation more than in Affirmation

•  Nods happen in Affirmation more than in Negation

•  So-What happens more in Question than other discourse functions

HEAD HAND
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Modeling the gestures
•  Gesture retrieval à more samples to train the models

•  Assumptions

•  Target gesture is known

•  Speech prosody features are known 

•  How to model the gesture?

•  Speech driven models 

•  Training: speech prosody features, motion capture data, and 
prototypical gesture

•  Testing (synthesis): speech prosody features, and prototypical 
gesture

19

Gesture #Retrieved

Head Shake 287

Head Nod 535

To-Fro 223

So-What 114

Regress 262
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Speech driven animation

•  Dynamic Bayesian Network

•  Shared hidden variable between speech 
and head/hand

•  Constrained on gestures

•  Add the constraint node as parent of 
the hidden state:

•  More robust to unbalanced data

•  Learns separately:

•  Prior probabilities of the gestures

•  The affect of gestures on transition matrices

Hh&s

Speech

Hh&s

Gesture

Speech Head/ 
Hand 

t-1 t

Hh&s

Gesture

Speech Head/ 
Hand 

Head/ 
Hand 

Gesture
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HEAD Synthesis
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Nods Shakes

For illustration gesture is always “on”
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HAND Synthesis
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To-Fro So-What Regress

 For illustration gesture is always “on”
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Conclusions
•  This paper proposed a framework to automatically detect 

target gestures

•  Using few examples in a motion capture database

•  The advantage of this framework is its flexibility to retrieve any gesture

•  The approach jointly solved the segmentation and detection 
of gestures 

•  Multi scale windows

•  Two-step detection framework 

•  We used the retrieved samples to synthesize novel 
realizations of these gestures 

•  Speech-driven animations constrained by these target behaviors
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Future Work

•  Explore the minimum number of examples per gesture 
to achieve acceptable detection rates 

•  Using adaptation to generalize the models to retrieve 
similar gestures from different subjects

•  With more data, more restrictive threshold can be considered

•  Explore the effects of detection errors on the 
performance of the speech driven models

24
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Multimodal Signal Processing (MSP)

•  Questions?

25

http://msp.utdallas.edu/!
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HEAD Synthesis
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Nods Shakes

For illustration gesture is always “on”
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HAND Synthesis
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To-Fro So-What Regress

For illustration gesture is always “on”
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HEAD Synthesis
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Nods Shakes

For illustration gesture is always “on”
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HAND Synthesis
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To-Fro So-What Regress

For illustration gesture is always “on”


