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ABSTRACT
Creating believable behaviors for conversational agents (CAs)
is a challenging task, given the complex relationship be-
tween speech and various nonverbal behaviors. The two
main approaches are rule-based systems, which tend to pro-
duce behaviors with limited variations compared to natu-
ral interactions, and data-driven systems, which tend to ig-
nore the underlying semantic meaning of the message (e.g.,
gestures without meaning). We envision a hybrid system,
acting as the behavior realization layer in rule-based sys-
tems, while exploiting the rich variation in natural inter-
actions. Constrained on a given target gesture (e.g., head
nod) and speech signal, the system will generate novel re-
alizations learned from the data, capturing the timely rela-
tionship between speech and gestures. An important task in
this research is identifying multiple examples of the target
gestures in the corpus. This paper proposes a data min-
ing framework for detecting gestures of interest in a motion
capture database. First, we train One-class support vector
machines (SVMs) to detect candidate segments conveying
the target gesture. Second, we use dynamic time alignment
kernel (DTAK) to compare the similarity between the ex-
amples (i.e., target gesture) and the given segments. We
evaluate the approach for five prototypical hand and head
gestures showing reasonable performance. These retrieved
gestures are then used to train a speech-driven framework
based on dynamic Bayesian networks (DBNs) to synthesize
these target behaviors.
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1. INTRODUCTION
Verbal and nonverbal behaviors are an important aspect

of human communications. While speech provides verbal
communication, people use gestures to clarify, complement
and emphasize their intentions and thoughts. Gestures may
convey the same meaning as speech, or they can comple-
ment and enrich the message [22]. While 90% of gestures
occur while speaking [22], nonverbal behaviors can occur
while the subject is listening, providing suitable feedback to
the speaker (e.g., backchannel communication). conversa-
tional agents (CAs) aiming to replicate human-like behav-
iors should carefully model the complex relationship between
gestures and speech.

There are two main approaches used to synthesize human-
like gestures: rule-based systems, and data-driven methods
[11]. Both approaches have advantages and disadvantages.
Rule-based systems derive animations relying on semantic
analysis of speech, creating appropriate rules to synthesize
behaviors that respond to the message [8, 15]. Since rule-
based systems do not capture the large variability of ges-
tures and its dependency on speech, these approaches, may
result in movements that seem repetitive and not closely syn-
chronized with the prosodic structure in speech [11]. Data-
driven approaches learn the behaviors from available record-
ings, capturing a larger range of variability in the behav-
iors. Gestures are tightly connected with prosody (energy,
intonation, duration) [6]. Therefore, previous studies have
used speech prosody features to derive the gestures of the
speaker [4,5,10,17,18,20]. While gestures generated by these
methods may be perfectly synchronized with speech, they
may not appropriately respond to the underlying content in
the message (e.g., nodding for negations). In these cases,
the CA will convey behaviors without meaning, reducing
the role of gestures in the communication. There are stud-
ies that combine the rule-based and data-driven approaches
to create the behaviors [21,26,29].

Kopp et al. [15] proposed a three layer framework for an
embodied conversational agent (ECA) composed of intent
planning, behavior planning, and behavior realization. The
last layer generates the behavior, determining the parame-
ters associated with the amplitude and the synchronization
points of the behavior in time. We envision a behavior real-
ization system that bridges gap between the rule-based sys-
tems and data-driven approaches, exploiting their benefits
and overcoming their limitations. For a given message, our
proposed model will generate speech-driven gestures that
are constrained by specific behaviors associated with the se-
mantic context (e.g., head shakes for negations). We aim to
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produce non-repetitive realization of target gestures. A key
step toward this approach is generating enough examples for
these target gestures to train the models (e.g., head nods,
head shakes).

This study provides a flexible framework to retrieve arbi-
trary number of gestures in the data. We focus on gestures
corresponding to movements of head and hands. Starting
from few examples of the target prototypical gestures, the
framework searches for similar gestures in the database us-
ing a two step approach. First, we train a One-class support
vector machines (SVMs) to effectively reduce the number
of candidates for the target gesture. Second, candidate seg-
ments are evaluated with a dynamic time alignment ker-
nel (DTAK) framework, which estimates the similarity be-
tween the target gestures and the available examples. We
demonstrate the performance of the system with prototypi-
cal behaviors for three hand and two head gestures, achiev-
ing precision ranging from 67% to 92%. After retrieving the
examples, we analyze the relationship between the detected
gestures and the underlying discourse functions of the mes-
sage (i.e., discourse functions are semantic functions in the
message such as question, affirmation, and negation). The
study reveals systematic patterns where discourse functions
produce characteristic distribution of these prototypical ges-
tures. We also discuss our proposed approach to generate
these prototypical gestures using speech-driven framework
based on dynamic Bayesian networks (DBNs).

2. RELATED WORK

2.1 Rule-Based versus Data-Driven Systems
To design believable CAs, we need to incorporate nat-

uralistic behaviors that replicate the complex relationship
between human gestures and speech. These behaviors need
to be semantically connected with the message and carefully
synchronized with the prosodic structure in speech.

Studies have proposed approaches to synthesize behaviors
from data. Among data-driven systems, speech prosodic
features are particularly useful to generate gestures [3, 4, 7,
17, 18, 20]. Beat gestures are commonly used to emphasize
words according to their role in the message [22]. Given
that prosody is also used to fulfill the same task (i.e., em-
phasizing and parsing the message), it is not surprising to
observe a high correlation between speech features and ges-
tures [6]. However, other types of gestures such as iconic and
metaphoric gestures are intrinsically related to the message’s
content. Although prosody features can provide emotional,
emphatic and energy related cues to create gestures that are
tightly synchronized with speech, additional information is
needed to create gestures responding to the underlying con-
tent of the message.

There are several studies where the authors have used
rules to animate behaviors [1, 8, 15]. These approaches re-
quire to define the behaviors, which may result in repetitive
behaviors [11]. Furthermore, creating naturalistic synchrony
between speech and behaviors is a challenge.

There are studies that have combined these two approaches.
Stone et al. [29] designed a system that searches throughout
a speech and motion capture dataset for suitable combina-
tion of speech and motion units in the corpus conveying sim-
ilar meaning and planned behaviors. Their system utilizes a
dynamic programming scheme which simultaneously solves
the selection of speech and motion units. Marsella et al. [21]

developed a framework that creates appropriate gestures de-
pending on the content of speech. It uses speech prosody
features to capture the emphasis and emotional state of the
speaker. Sadoughi et al. [26] proposed a DBN to constrain
a speech driven animation based on semantic labels (e.g.,
Question and Affirmation.

2.2 Gesture Segmentation and Classification
An important contribution of this study is a flexible sys-

tem to retrieve segments in the data conveying target ges-
tures. We will use these segments to constrain the behaviors
synthesized by our speech-driven animation. In this context,
there are several studies on gesture detection, segmentation
and classification that are relevant to this study, which we
review in this section.

Zhou et al. [32] proposed the hierarchical aligned clus-
ter analysis (HACA) algorithm to dynamically segment and
cluster motion capture data into movement primitives. HACA
combines a dynamic algorithm with DTAK to automati-
cally segment and identify clusters with similar behaviors.
DTAK, which we describe in Section 4.3, estimates the simi-
larity between two sequences. Bozkurt et al. [2] used parallel
hidden Markov models (PHMMs) to find primitives for hand
movements. PHMM is an unsupervised framework com-
posed of several branches with equal number of states, each
representing a primitive. They used PHMM to simultane-
ously segment and cluster the motion capture data. In these
two approaches the data is segmented into gesture primitives
that are automatically generated using unsupervised frame-
works. For our problem, these approaches are less effective
since we do not have control to define primitives similar to
the target gestures.

Studies have formulated this problem as gesture classifi-
cation. Joshi et al. [12] presented a framework for gesture
classification and segmentation. Starting from a vocabulary
of predefined gestures, the system trained a random for-
est model using a database of video and depth map of the
joints. During testing, they use a multi-scale sliding window
framework for classification, performing a forward search to
segment and classify the target gestures.

There are also some studies on gesture detection. Kovar et
al. [16] developed a framework that searches a motion cap-
ture data for gestures. They use dynamic time alignment to
find the distance between segments and each queried gesture.
The retrieved samples are the ones with distances below a
threshold. They used these samples to expand the variations
of the queries, which are used to repeat the search. Nickel
et al. [23] presented a system that identifies pointing ges-
tures and the direction of pointing, on stereo camera data.
They trained HMMs for each phase of this gesture (onset,
hold and offset). They detected the gesture wherever they
find three points in time such that the probability of the
first point being in the beginning phase and the last point
being in the ending phase was higher than the probabili-
ties of these points belonging to the ending and beginning
phase, respectively. Wang et al. [31] proposed a framework
to detect three gestures used as commands for a smart-board
(lining, pointing, and circling). Their framework is based on
HMMs, and they identify the gestures if the confidence value
for the gesture is higher than a threshold.

2.3 Contribution of this Study
This study proposes a framework to detect prototypical
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(a) So-What (b) To-Fro (c) Regress

Figure 1: Examples of the target hand gestures used in this study.

gestures, which are then analyzed as a function of their un-
derlying discourse functions. The contributions of this paper
are as follows. First, we design a framework that mines a
motion capture database to find similar gestures to arbitrary
number of target gestures. Second, we study the relationship
between the retrieved gestures and discourse functions. This
analysis is tangible, capturing characteristic patterns of typ-
ical behaviors produced by the head and hands. Third, we
propose a speech-driven framework based on DBN to illus-
trate how the retrieved samples can be used to synthesize
behaviors constrained by the target gesture. This frame-
work can create a link between rule-based and data-driven
systems.

3. DATA
This study relies on the MSP-AVATAR corpus [27]. This

corpus is rich in nonverbal behaviors and discourse func-
tions. The corpus provides dyadic interactions with improvi-
sations, where the scenarios are carefully designed to create
behaviors associated with the following discourse functions:
contrast, confirmation/negation, question, uncertainty, sug-
gest, giving orders, warn, inform, large/small, and pronouns
(i.e., uttering pronouns such as“I”,“you”, and“they”). These
discourse functions were selected following the work of Poggi
et al. [25] and Marsella et al. [21]. This database also in-
cludes the labels for discourse functions, providing a suitable
resource for the analysis of nonverbal behaviors and their re-
lationship to mid level representation of speech semantics in
the form of discourse functions. This corpus comprises video
and audio recordings from six actors during four dyadic ses-
sions. In each dyadic recording only one actor was recorded
using the motion capture system, providing detailed facial
and upper body motion information for four actors. The
details of the corpus are described in Sadoughi et al. [27].
This study uses the recordings of one actress, consisting of
22 sessions (66 minutes).

To train and evaluate our approach, we need to first define
our behaviors of interest. Since the corpus contains motion
capture data from the upper-body joints of the actors, we
consider target behaviors from prototypical hand and head
gestures. The selection of the target gestures was influenced
by the work of Kipp [14], which are listed in Table 1. These
gestures are defined as follow:
Head Shake: gesture defined by one or more head yaw rota-
tion.
Head Nod: gesture defined by one or more head pitch rota-
tion.
So-What: gesture defined by outward movement of the hands
such that the hands show open palms at the end of the arc
(Fig. 1(a)).
To-Fro: gesture defined by the movements of both hands

Table 1: List of prototypical gestures considered in
this study. The set SamplesExamples consists of the
samples identified in the corpus used to retrieve sim-
ilar gestures. The set SamplesTest&Dev consists of the
samples annotated on the sessions used as develop-
ment and testing.

Behavior Region #SamplesExamples #SamplesTest&Dev

Shake Head 27 115
Nod Head 24 138
So-What Hand 14 21
To-Fro Hand 27 29
Regress Hand 26 73

from one side to the other side (Fig. 1(b)).
Regress: gesture defined by the movement of both hands in
circles in the direction toward the body (Fig. 1(c)).

Head gestures are described with yaw, pitch and roll an-
gles (3D vector). Hand gestures are described by the move-
ments of the arm and forearm. We use three degrees of
freedom per joint representing its Euler angles, resulting in
12D vector (2 arms × 2 joints × 3 angles). In all the ex-
periments we z-normalized all the angles across the whole
data.

We used ANVIL [13] to annotate some of the target be-
haviors in the videos. We split the 22 sessions into two
partitions of 19 and 3 sessions. From the first partition, we
manually identify between 14 and 27 examples per target
behavior, forming our SamplesExamples set (Table 1 lists the
exact number of examples). To evaluate the performance
of the system, we fully annotated three videos for hand and
head gestures (SamplesTest&Dev set). Non overlapped sets in
this partition are used as develop and test sets. Table 1 lists
the actual number of behaviors associated with each target
gesture in the SamplesTest&Dev set.

4. FRAMEWORK
This section describes the proposed method to retrieve

behaviors in the database that are similar to the few ex-
amples provided for training. Figure 2 shows the overall
architecture of the system. The key challenge in this data
mining task is that gestures can have different durations and
be located at any time in the signal. Therefore, we need to
jointly solve the problems of segmenting and detecting the
gestures. An exhaustive search is not computationally pos-
sible, so assumptions are needed to reduce the search space.
We implement a temporal reduction to decrease the length
of the data and examples. Then, we use multi scale windows
to evaluate the presence of the gestures. The behaviors in
the windows are compared with the examples using two ap-

117



DATA 
Temporal 
Reduction 

Gesture Retrieval 
 
 
 
 
 

1-SVMs DTAK 

Examples 

Figure 2: Block diagram of the proposed framework
for gesture detection.
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Figure 3: Example comparing the original signal and
its temporally reduced version.

proaches. First, we use one class SVMs trained with limited
examples. This method discards most of the segments, leav-
ing only candidates segments, which are further evaluated
using DTAK. This section explains these steps in details.

4.1 Temporal Reduction
The first step in the process is to simplify the represen-

tation of the data, making the search faster. The motion
capture data is sampled at 120 fps, where the trajectories
convey redundant information. Therefore, it is not practical
to run the search algorithm on the original motion capture
data. Instead, we remove redundant information from the
frames. Zhou et al. [33] proposed an approach for temporal
reduction using the K-means algorithm, where the frames
were grouped in clusters capturing major transitions in the
movements. Then, they applied nonuniform sampling keep-
ing only the transitions between clusters and intermediate
frames when the segments were too long. Our proposed ap-
proach builds upon this framework. K-means is sensitive to
initialization – it can reach local optimum depending on the
initial clusters. For each trajectory in the data, we propose
to use the Linde-Buzo-Gray vector quantization (LBG-VQ)
technique [19], setting the number of codebooks to 32. We
remove consecutive frames assigned to the same cluster. We
keep all the transitioning frames. Furthermore, if more than
five consecutive frames are discarded, we keep intermediate
frames, following the setting suggested by Zhou et al. [32].
Figure 3 shows an example for temporal reduction showing
the same pattern as the original trajectory but with 20% of
the frames.

4.2 Gesture Segmentation
The proposed approach simultaneously solves the segmen-
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Figure 4: Multi scale window approach for segmen-
tation.

tation and detection of the target gestures. We separately
implement the approach for each of the five gestures con-
sidered in this study. The segmentation consists of defining
multi scale windows, where we search for the gestures. This
framework is inspired by the approach proposed by Joshi et
al. [12]. We define a window of size Lw frames (after tem-
poral reduction). We set the size of the window two times
the longest gesture available in the training data. Within
this window, we search for segments using the following ap-
proach. First, we define the minimum (Lmin) and maximum
(Lmax) lengths of the target gesture. Starting from the be-
ginning of the window, we create a segment of length Lmin,
which is incrementally increased by ∆ frames until reach-
ing Lmax (top diagram in Fig. 4). Then, we repeat the
approach, by shifting the starting point of the segments by
five frames within the window (middle diagram in Fig. 4).
This approach is repeated till reaching the end of the window
(bottom of diagram in Fig. 4). At this point, we slide the
window keeping 75% overlapped frames, aiming to capture
all possible segments containing the target gesture.

We limit the search space with Lmin and Lmax. For
a given target gesture, Lmin equals to 90% of the mini-
mum length of the training samples. Likewise, Lmax equals
to 1.3 times the maximum length of the training samples.
The increment frames between iteration is empirically set to
∆ = (Lmax − Lmin)/30. We evaluate the presence of the
target gesture in each of the candidate segments using the
approach described in Section 4.3. We may detect multiple
segments within each window, which may be overlapped.
Among the selected gestures in the window, wherever there
is an overlap, we select the one with the maximum similarity
to the target gesture.

4.3 Gesture Detection
The next step is to determine whether the target gesture

is included in the a given segment. Given the large number
of segments generated by the multi scale window framework,
we implement a two-step approach, where the first step is
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fast and efficient to discard irrelevant segments, and the sec-
ond step is accurate to compare candidate segments with the
examples of the target gesture.

The first approach is implemented with one-class SVM
with linear kernel [28]. One-class SVM finds a hyperplane
that separates the positive samples. This formulation re-
sults in a binary function assigning 1 to a small region in the
feature space around the positive samples. This framework
is ideal for this problem, since it is fast and does not re-
quire to define negative samples per gesture. We implement
the classifier with LIBSVM [9]. Given the limited number
of samples, we train a one-class SVM for each dimension of
the feature vector (3 for head gestures, 12 for hand gestures).
Instead of using the actual values of the angles, we estimate
their standard deviation which are used as features. The
standard deviation of the angle captures the dynamic behav-
ior of the gesture. Using only this feature allows us to discard
segments without movements or with behaviors that are sig-
nificantly different from the target gesture. As expected, not
all the angles characterizing the target gesture are useful. To
select the features, and therefore the classifiers, we use the
examples from the training set (SamplesExamples) using one-
sample-out, cross-validation method, where in each fold we
train the one-class SVMs with all the samples, excepting the
one used for evaluating the performance (notice that sam-
ples from the SamplesTest&Dev set are not used). Then, we
fused the classifiers using AND operation. If the overall ac-
curacy on the training samples is lower than 85%, we sort
the features in descending order according to their overall
accuracy. Then, we sequentially remove bad classifiers one
by one, till reaching our target 85% accuracy. Notice that
these classifiers do not need to have high accuracy. In fact,
increasing the accuracy may results in increase of false neg-
ative rates, where target gestures are not detected. We can
have false positive segments, which can be rejected in the
second step.

The second approach is implemented with DTAK, which
compares the candidates segments and each of the training
examples. DTAK gives a measure of similarity between two
segments regardless of their durations [24]. It defines a dis-
tance measurement that satisfies the triangular inequality,
making it a better fit than dynamic time warping (DTW)
[32]. Given two sequences X and Y of length lx and ly (X =
[xi, x2, ..., xlx ], Y = [yi, y2, ..., yly ]), DTAK computes the
similarity between them using the recursive formula given
in Equation 1. The variable ui,j is an element of the ma-
trix U ∈ Rnlx×nly , which contains the accumulated simi-
larity. The first element of the matrix U is initialized as
u1,1 = 2K1,1. Ki,j is the kernel capturing the similarity be-
tween frames xi and yj . The rest of the element in U are
found recursively using Equation 1. For DTAK, we use the
implementations provided by Zhou et al. [32].

τ(X,Y ) =
ulx,ly

lx + ly
, ui,j = max


ui−1,j +Ki,j

ui−1,j−1 + 2Ki,j

ui,j−1 +Ki,j

(1)

Ki,j = exp

(
−‖xi − yj‖

2

2σ2

)
(2)

This study uses Gaussian kernel (Equation 2). If we set
the standard deviation of the kernel close to zero, (σ ≈ 0),
the similarity between the two sequences will be low, unless

Table 2: The precisions and recall of the detected
gestures on the test set.

Region Behavior 19 sessions SamplesTest&Dev

Precision Precision Recall
[%] [%] [%]

H
ea

d Shake 91.32 95.65 42.31
Nod 85.04 87.10 61.36

H
a
n
d
s So-What 79.69 76.92 47.62

To-Fro 59.52 67.86 67.86
Regress 71.77 78.85 57.75

we find an exact match. If σ is too large, it will converge
to 1 regardless of the distance between the two sequences.
We need to set σ such that it provides a good resolution for
this problem. We notice that σ equal to 0.1 gives reasonable
performance.

Notice that we have multiple examples per gesture. This
framework compares each of the examples with the segment.
As a measure of similarity between a segment and the target
gesture, Zhou et al. [32] proposed the mean of individual sim-
ilarities. Instead, we consider the median of the individual
similarities obtained across examples (median is less sensi-
tive to outliers than mean). DTAK provides a score with the
similarity of the segments and the target gestures. We define
a threshold for this metric to make the final decision about
a segment. To fix the threshold, we use a three-fold, cross-
validation approach on the SamplesTest&Dev data to define
the develop (two partitions) and test (one partition) set. We
find the threshold that maximizes the F-score on the devel-
oping set. To find the F-score, we estimate the precision
and recall scores. We consider a true detection, when there
is an overlap between the selected segment and the ground
truth detection. We consider a false negative when we fail
to detect a target gesture. We use the selected thresholds
on the corresponding test sets, and evaluate the result. We
use the mean of the thresholds found in the three folds to
detect gesture in the rest of the data.

5. EXPERIMENTAL EVALUATION
We evaluate the proposed approach over the entire data

(22 sessions). In total, we retrieve 287 head shakes, 535
head nods, 114 So-What gestures, 223 To-Fro gestures, and
262 Regress gestures. The first evaluation of the proposed
approach was to measure the precision over all the sessions,
excepting the three sessions used for developing and test-
ing (i.e., 19 sessions). To find the precision, we reviewed
the retrieved gestures, to annotate whether they contain the
target gesture. When the gestures were correctly detected,
we count them as true positives. Otherwise, we count them
as false positives. Table 2 shows the results (“19 sessions
column). Over 85% of the head gestures successfully con-
vey the target behaviors. While the precision rates decrease
for hand gestures, the performance is still over 67%. Head
movements are easier to distinguish than hand gestures (3D
vectors vs. 12D vectors). Furthermore, there is more confu-
sion given the complexity of hand gestures. In spite of these
challenges, these precision rates are very promising.

Evaluating the performance of the system in term of recall
rates is more challenging, since we need to account for the
gestures that our system fails to identify. For this purpose,
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Figure 5: The distribution of the head gestures
across discourse functions. Neg: Negation, Aff: Af-
firmation, Que: Question, Sug: Suggestion, Sta:
Statement, Inf: Information, Unc: Uncertainty,
Con: Contrast, War: Warn, Ord: Order, Lar:
Large, Small: Small, Ixx: I-deictic, You: You-deictic
and Other: Other-deictic.

we use the three test sessions, since they are fully annotated.
We consider a false negative when a gesture in the annota-
tion is not detected by our system. Table 2 gives the results
for precision and recall rates over test set (SamplesTest&Dev

columns). In general, the recall rates are lower than the
precision rates indicating that some of the gestures are not
detected by the system. For head movements, the recall
rates are over 42%, and the precision rates are over 85%.
The recall rates are over 57% for To-Fro and Regress ges-
tures. The precision rates are higher than 65% for all hand
gestures

After retrieving the target gestures, we study their distri-
bution along the discourse functions. Figures 5 and 6 show
the results for head and hand gestures, respectively. We plot
the distribution for each gesture by counting the number of
overlapped frames between discourse functions and target
gestures. Wherever there is a confusion in a given region
(hand or head), we keep the gesture with the highest simi-
larity. We also consider the frames without target gestures
(“Other-head”, “Other-hand”). These numbers are normal-
ized by the total number of frames associated with a given
discourse function (head or hand). Therefore, the sum of
the bins corresponding to each discourse function adds to
one in both figures.

These results reveal some interesting relationships between
these gestures and discourse functions. Figure 5 shows that
Shakes happen more often during Large, Contrast and Warn.
Also, the subject shakes her head more often during Nega-
tions than during Affirmation. We observe that Nods hap-
pen more often in You, Statement, Affirmation and Con-
trast. In addition, Nodes occur more often in Affirmation
than in Negation. For hand gestures, Figure 6 shows that
So-What happens quite often during Question, Uncertainty
and Large. To-Fro happens more often when the person
is using pronouns referring to Other and during Inform.
Regress happens more frequently in Small, Contrast, You,
and Suggest. These results show that there is a connection
between discourse functions and behaviors.

6. SPEECH-DRIVEN ANIMATIONS
We are retrieving gestures to generate speech-drive anima-

tions with meaningful behaviors. Our goal is to automati-
cally identify realizations of target gestures in the corpus to
synthesize novel versions of these behaviors. After retriev-
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Figure 6: The distribution of the hand gestures
across discourse functions. Neg: Negation, Aff: Af-
firmation, Que: Question, Sug: Suggestion, Sta:
Statement, Inf: Information, Unc: Uncertainty,
Con: Contrast, War: Warn, Ord: Order, Lar:
Large, Small: Small, Ixx: I-deictic, You: You-deictic
and Other: Other-deictic.

ing target gestures from the data, we train a model with
these samples to evaluate whether we can capture the char-
acteristics of these behaviors during synthesis. This section
describes our approach.

DBNs have been used in other studies to derive anima-
tions based on speech prosody features [20, 26]. This study
designs a DBN inspired by the constrained DBN proposed
in Sadoughi et al. [26]. We propose an improved version
of this DBN displayed in Figure 7. The base structure of
the model is similar. Ignoring the Gesture node, the model
consists of a hidden variable representing the state configu-
ration of the model (Hh&s). This variable plays the role of
a codebook capturing the relationship between prosodic fea-
tures (Speech node) and the target behavior (Head or Hand
node). For a given speech observation, we propagate the
evidence through the network, synthesizing the most likely
behaviors.

Sadoughi et al. [26] proposed to constrain the models by
adding a child node to the state variable Hh&s. This node
represented the underlying discourse function of the mes-
sage, which constrained the behaviors (in our work, the
constrains are not discourse function, but the actual tar-
get behaviors). In this study, we consider the constraint as
the cause of the hidden state Hh&s (Figure 7). The tar-
get gesture constrains the relationship between speech and
gestures. This modification allows the network to learn the
prior probabilities of different categories separate from their
effects on the variable Hh&s. When the number of states is
big enough to cover feasible range of behaviors, the charac-
teristics of the constraints can be learned better, even when
the data is unbalanced. This network will learn the shared
states using the entire data, and the transition probabili-
ties between the states using the constraints. We train the
network using full observation, i.e. we have speech prosody
features, motion capture data and constraints (i.e., target
gesture). To synthesize the behaviors, we run inference on
the network using partial observation (just speech and con-
straints).

We separately train the proposed DBN for head and hand
gestures. We consider 16 states for each. The constraints
are discrete values which correspond to the presence of a

120



behavior at each time frame. For a given gesture, we use
all the retrieved samples, even if they are incorrect. For
head gestures the Gesture variable has three states (shake,
nod, without-constraint), and for hand gesture it has four
states (So-What, To-Fro, Regress, without-constraint). We
use the data when the subject is speaking to train the DBN,
since we aim to synthesize animations based on speech. Fol-
lowing previous studies [4, 20, 26], speech features are the
fundamental frequency (F0) and energy, and their first and
second order derivatives. We interpolate the F0 contour to
avoid discontinuities in our model. We calculate F0 and en-
ergy in windows of 16.67 ms. Since the sampling rate of the
motion capture data is 120 Hz, we interpolate the speech
features to match the frequency of the motion capture data.

Hh&s 

Gesture 

Speech Head/
Hands 

Hh&s 

Gesture 

Speech 

t-1 t 

Head/
Hands 

Figure 7: The structure of the DBN which is de-
signed to capture the joint states of speech and
movements while constrained on target gestures.

We synthesize animations with the Smartbody toolkit [30].
Using the same sentences, we constrain the DBN with a sin-
gle behavior at a time, to observe whether the models were
able to capture the characteristics of the target gestures.
When the person is silent, we create animations without
backchannel by simply using the average posture of the per-
son. We smooth the behaviors using the quaternion interpo-
lation of Euler angles used by Busso et al. [5]. We provide
a video as a supplemental material with examples of an-
imations driven by speech that are constrained on target
gestures by the proposed models. The video shows that the
models are in general successful in capturing the target be-
haviors. When we constrain the animation with head nods
or head shakes, the CA displays multiple instances of these
gestures. For hand movements, the models were successful
in capturing Regress. The videos constrained on So-What
generates more samples of this behavior than during other
videos. For To-Fro, the approach was less successful. This
result may be explained by the limited number of instances
retrieved by the system, and the complexity of the behavior.

7. CONCLUSIONS
This paper proposed a framework to automatically detect

target gestures defined by few examples in a motion capture
database. We considered two head gestures and three hand
gestures. The approach jointly solved the segmentation and
detection of gestures by using multi scale windows, and a
two-step detection framework. The first step efficiently re-
duced the number of candidate segments using one-class
SVM. The second step determined the similarity between

segments and the given examples using DTAK. The advan-
tage of this framework is its flexibility to retrieve any ges-
ture. The only requirement is to collect few examples of the
target behaviors. We used the retrieved samples to synthe-
size novel realizations of these gestures using speech-driven
animations constrained by these target behaviors. The pa-
per demonstrated that rule-based and data-driven systems
can be combined in a principled manner producing gestures
with meaning, capturing the variability observed in natural
nonverbal behaviors.

There are many opportunities to extend this work. An
interesting question is to explore the minimum number of
examples per gesture required to achieve acceptable detec-
tion rates. Likewise, the framework was evaluated with mo-
tion capture data from a single subject in the corpus. We
are studying adaptation schemes to generalize the models to
retrieve similar gestures from different subjects. We trained
a speech driven animation model constrained on the target
behaviors. The training data relied on the gestures detected
by our framework. The videos show that we were still able
to capture the patterns of most of the gesture, even when
the detection framework was not perfect. It is not clear
how much these errors affect the performance of the speech-
driven models. Other statistical models may be more robust
against these errors, which can lead to better realization of
the behaviors.
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[18] S. Levine, P. Krähenbühl, S. Thrun, and V. Koltun.
Gesture controllers. ACM Transactions on Graphics,
29(4):124:1–124:11, July 2010.

[19] Y. Linde, A. Buzo, and R. Gray. An algorithm for
vector quantizer design. IEEE Transactions on
Communications, 28(1):84–95, Jan 1980.

[20] S. Mariooryad and C. Busso. Generating human-like
behaviors using joint, speech-driven models for
conversational agents. IEEE Transactions on Audio,
Speech and Language Processing, 20(8):2329–2340,
October 2012.

[21] S. Marsella, Y. Xu, M. Lhommet, A. Feng, S. Scherer,

and A. Shapiro. Virtual character performance from
speech. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA 2013),
pages 25–35, Anaheim, CA, USA, July 2013.

[22] D. McNeill. Hand and Mind: What gestures reveal
about thought. The University of Chicago Press,
Chicago, IL, USA, 1992.

[23] K. Nickel and R. Stiefelhagen. Pointing gesture
recognition based on 3D-tracking of face, hands and
head orientation. In International Conference on
Multimodal Interfaces (ICMI 2003), pages 140–146,
Vancouver, BC, Canada, November 2003.

[24] H. Noma and K. Shimodaira. Dynamic time-alignment
kernel in support vector machine. Advances in neural
information processing systems, 14:921, 2002.

[25] I. Poggi, C. Pelachaud, F. de Rosis, V. Carofiglio, and
B. de Carolis. Greta. a believable embodied
conversational agent. In O. Stock and M. Zancanaro,
editors, Multimodal Intelligent Information
Presentation, Text, Speech and Language Technology,
pages 3–25. Springer Netherlands, Dordrecht, The
Netherlands, February 2005.

[26] N. Sadoughi, Y. Liu, and C. Busso. Speech-driven
animation constrained by appropriate discourse
functions. In International conference on multimodal
interaction (ICMI 2014), pages 148–155, Istanbul,
Turkey, November 2014.

[27] N. Sadoughi, Y. Liu, and C. Busso. MSP-AVATAR
corpus: Motion capture recordings to study the role of
discourse functions in the design of intelligent virtual
agents. In 1st International Workshop on
Understanding Human Activities through 3D Sensors
(UHA3DS 2015), Ljubljana, Slovenia, May 2015.

[28] B. Schölkopf, R. Williamson, A. Smola,
J. Shawe-Taylor, and J. Platt. Support vector method
for novelty detection. In NIPS, volume 12, pages
582–588, 1999.

[29] M. Stone, D. DeCarlo, I. Oh, C. Rodriguez, A. Stere,
A. Lees, and C. Bregler. Speaking with hands:
Creating animated conversational characters from
recordings of human performance. ACM Transactions
on Graphics (TOG), 23(3):506–513, August 2004.

[30] M. Thiebaux, S. Marsella, A. N. Marshall, and
M. Kallmann. Smartbody: Behavior realization for
embodied conversational agents. In Proceedings of the
7th international joint conference on Autonomous
agents and multiagent systems-Volume 1, volume 1,
pages 151–158, Estoril, Portugal, May 2008.

[31] F. Wang, C.-W. Ngo, and T.-C. Pong. Simulating a
smartboard by real-time gesture detection in lecture
videos. IEEE Transactions on Multimedia,
10(5):926–935, August 2008.

[32] F. Zhou, F. D. la Torre, and J. K. Hodgins.
Hierarchical aligned cluster analysis for temporal
clustering of human motion. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
35(3):582–596, March 2013.

[33] F. Zhou, F. Torre, and J. K. Hodgins. Aligned cluster
analysis for temporal segmentation of human motion.
In Automatic Face & Gesture Recognition, 2008.
FG’08. 8th IEEE International Conference on, pages
1–7. IEEE, 2008.

122



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Horizontal, vertical offset 41.78, 213.43 Width 103.54 Height 12.72 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

     41.7803 213.434 103.5424 12.7157 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     8
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





