

Joint Learning of Speech-Driven Facial Motion with Bidirectional Long-Short Term Memory

NAJMEH SADOUGHI AND CARLOS BUSSO

Multimodal Signal Processing (MSP) lab The University of Texas at Dallas Erik Jonsson School of Engineering and Computer Science

msp.utdallas.edu

Motivation

- Generate expressive facial movements for virtual agent (VA)
 - Facilitate the communication
 - Naturalness
- Facial movements
 - Articulation, emotion, race, personality
- Articulation
 - Lower face region [Busso and Narayanan, 2007]
- Emotion
 - Upper face region
- Muscles throughout the face are connected
- Emotion manifestation through multiple regions

Overview

Hypothesis: There are principled relationships between different facial regions

Related Work

- Joint models:
 - Eyebrow & head motion
- Generating more realistic sequences than separate models
- Mariooryad and Busso [2012]
- Ding et al. [2013]

[Mariooryad and Busso 2012]

Model Selection

- HMMs, dynamic Bayesian networks:
 - Generative Models
 - Generate outputs with discontinuities
 - Require post processing smoothing
- Predictive deep model with nonlinear units:
 - Discriminative model
 - They have shown to outperform HMMs for lips movement prediction by Taylor et al.[2016], Fan et al. [2016]

Corpus: IEMOCAP

- Video, audio and MoCap recording
- Dyadic interactions
- Script and improvisation scenarios
- l0 actors
- The position of the facial markers

Features

- I9 markers for the upper facial region
- I2 markers for the middle facial region
- 15 markers for the lower facial region
- 25 Mel-frequency cepstral coefficients (MFCCs)
- Fundamental frequency
- Intensity (25ms windows every 8.33ms)
- I7 LLDs eGeMAPS [Eyben et al., 2016]

Recurrent Neural Network

- RNNs learn temporal dependencies
 - Temporal connections between consecutive hidden units between time frames

Vanishing or Exploding Grad.

length(x)

Long Short Term Memory (LSTM)

- Extension of RNNs
- They handle this problem

Long Short Term Memory

- LSTM utilizes a cell
- LSTM uses three gates
- Input gate:
 - How much of input to store in the cell
- Forget gate:

 h_{t-1}

 x_t

- How of the previous cell being retained in the cell
- Output gate:
 - How much of cell to be used as output
- $o h_t = o_t \odot \tanh(C_t) + V_o C_t + b_o)$

 $x_t \quad h_{t-1}$

Bidirectional LSTM

- An extension of LSTM
- Uses the previous and future frames to predict at t
- Consists of training forward and backward LSTMs
- Generates smoother movements
- Can be used in real time (post-buffer)
- We use it off-line, generating the whole turn sequence

Separate Models (Baseline)

- Separately synthesize the lower, middle and upper face regions
 Upper face region
- Independently create the facial markers trajectories for each region
- Local relationships within regions are preserved
- Possible intrinsic relationship across regions are neglected
- Assumption:
 - Relationships across the three regions are not important

Lower face region

Separate Models (Baseline)

One model per facial region (upper, middle, lower)

Joint Models – Multitask Learning

- Multitask learning
 - Jointly solve related problems using shared layer representation
- Three related tasks:
 - Iower, middle and upper face movement predictions
- From a learning perspective
 - Two tasks regularize each task systematically
 - Learn more robust features with better generalization

Joint Models – Multitask Learning

- Part of the networks is shared between all the tasks
- Assumption:
 - Facial movements of different regions have principled relationships

Cost Function & Objective Metrics

- Concordance correlation coefficient
- Our objective:
 - **Ι-**ρ_c
- Advantage:
 - Increase correlation
 - Decrease mean square error (MSE)
 - Increase range of movements

 $\sigma_x^2 + \sigma_v^2$

Predicted value: x

True value: y

 $2\rho\sigma_x\sigma_v$

Ι-ρ_c

Rendering with Xface

- Xface uses the MPEG4 standard to define facial points
- Most of the markers in the IEMOCAP database follow MPEG4 standard
- We follow the same mapping proposed by Mariooryad and Busso [2012]

Objective Evaluation

- 60% training, 20% validation, 20% test
- Concatenate all the turns for evaluation
- ρ_c increases for most cases for the joint model
- MSE decreases for several of the cases for the joint models
- For separate model: 1024 units is better than 512 units

Separate models require more memory

Model # nodes		# params	Upper face		Middle face		Lower face	
	per Layer		ρ _c	MSE	ρ _c	MSE	ρ _c	MSE
Separate-1	512	12.8 M	0.140				0.401	
Joint-1	512	4.4 M	0.150	1.32	0.274	1.30	0.390	1.26
Separate-1	1024	50.8 M	0.149	1.41	0.277	1.16	0.411	1.05
Joint-1	1024	17.1 M	0.160	1.40	0.297	1.24	0.413	1.14
Separate-2	512	31.7 M	0.135	1.44	0.260	1.24	0.392	1.04
Joint-2	512	23.2 M	0.160	1.37	0.307	1.14	0.411	1.06

LINEAR

RELUS

loint-2

E-GeMAPS-LLD

LINEAR **BLSTMs**

LINEAR

MIDDLE FACE LOWER FACE

Emotional Analysis

- 113 (neutral), 161 (anger), 86 (happiness), 131 (sadness), 247 (frustration)
- Separate-2 (512) vs Joint-2 (512)

Subjective Evaluation

UPPER FACE

LINEAR

BLSTM

MIDDLE FACE

LINEAR

BLSTMs

BLSTMs

RELUS

Joint-2

MFCCs

E-GeMAPS-LLD

LOWER FACE

LINEAR

BLSTMs

Limit the cases for subjective evaluations (5 cases)

E-GeMAPS-LLD

UPPER FACE MIDDLE FACE LOWER FACE

LINEAR

BLSTMs

RELUs

oint-l

MFCC

- Original
- Separate-1 (1024)
- Joint-I (1024)
- Separate-2 (512)
- Joint-2 (512)
- Randomly select 10 videos (10 x 5)
- Head is still
- 20 subjects from AMT
 - Naturalness scores I-10

19

Play/pause

How natural does the behaviors of avatar look like in the eyebrow region?					
○ I (low naturalness)					
○ 2					
○ 3					
4					
○ 5					
○ 6					
○7					
○ 8					
○ 9					
OIO (high naturalness)					

msp.utdallas.edu

Sample videos

<image/>	<image/>	<image/>
Original	Separate-2 (512)	Joint-2 (512)

Videos

Summary

- This paper explored multitask learning with BLSTMs
- Joint models jointly learn:
 - The relationship between speech and facial expressions
 - The relationship across facial regions, capturing intrinsic dependencies
- Baseline: models that separately estimate movements for different facial regions

Conclusions

- Objective evaluation showed improvements for the joint models in different facial regions
- The improvement are higher for the Joint-2 model, which has shared layers and task specific layers
- Sharing the layers reduces the number of parameters
- Subjective evaluations did not reveal any significant difference between the joint and separate models
- We believe that this result is due to the lack of expressiveness of Xface

Future works

- We will explore more sophisticated toolkits to present our results, including photo realistic videos [Taylor et al., 2016]
- We will also evaluate generating head motion driven by speech as an extra task in the multitask learning framework
- We will explore more advanced modeling strategies to better learn the relationships between speech and facial movements

Questions?

This work was funded by NSF grants (IIS: 1352950 and IIS: 1718944)

msp.utdallas.edu