Expressive Speech–Driven Lip Movements with Multitask Learning

Motivation

Background:

- Lower facial region is modulated by articul and emotional cues
- Modeling these factors can be useful for the generation of expressive lip movements

Our Work:

- Deep learning solutions to integrate the articulatory and emotional features from sp
- Using MTL to capture the relationship betw speech articulation and emotional content
- The primary task of predicting lip movement complemented with two secondary tasks:
- Viseme recognition
- Emotion recognition
- Adding auxiliary tasks helps the network to more predictive features for orofacial move

Objective Evaluation

- Concordance correlation (CC)
- Mean square error (MSE)

	Mode	λ ^{tv}	λe	CC	MSE
	STL	0	0	0.311	1.024
Structure 1	MTL 1	1	0	0.323	0.964
		0	1	0.273	1.055
		1	1	0.328	0.969
		1	0.1	0.343	0.937
		0.5	0.05	0.315	0.943
		0.3	0.1	0.340	0.924
	7 Ensembles			0.347	0.856
	STL	1	0	0.353	0.933
Structure 2		0	1	0.361	0.881
		1	1	0.315	1.037
	MTL 2	1	0.1	0.322	0.962
		0.5	0.05	0.346	0.921
		0.3	0.1	0.369	0.869
		0	0	0.357	0.904
	7 Ensembles			0.362	0.860

Moo Joir Joir Taylo Best Best

*Trained with more data

ID THE UNIVERSITY OF TEXAS AT DALLAS Najmeh Sadoughi and Carlos Busso

	Resource
he	 Corpus: IEMOCAP (1st female subject) Removing idiosyncratic differences Emotion annotations for six emotion categories
peech ween t	 Three annotators (majority vote) 14 viseme categories Audio: 25 MFCCs 88 eGeMAPS per turn Orofacial region: 15 motion capture markers (3x15E)
o learn rements	Rendering Toolkit: Xface

Results

Comparison of MTL and Baselines

	CC	MSE	
t 2- 512, Sadoughi and Busso (2017)*	0.350	0.980	
2-64, Sadoughi and Busso (2017)	0.194	1.170	-
or et al. (2016)	0.158	0.990	£
t of MTL (Proposed)	0.357	0.904	
t of MTL-Ensembles (Proposed)	0.362	0.860	-

Multitask Learning (MTL):

- MTL jointly solves related problems
- Prediction of orafacial movements is the primary task
- Triviseme and emotion recognition are auxiliary tasks
- The auxiliary tasks can be considered as regularizers for the network to learn more and generalizable robust features

Subjective Evaluation

- 70 videos
- 10 videos per model
- 24 evaluators (AMT)
- Each evaluated 35 videos
- 12 annotations per video
- Cronbach's alpha is 0.549

* * * * * *

0.2

Conclusions

- Using effective regularization in deep learning is important for modeling expressive facial movements
- The secondary tasks were carefully selected to improve the performance of the primary task
- An important strength of our framework is that we can train MTL using datasets with partial information
- **Future Work**
- Modeling idiosyncratic differences between speakers that can be directly added to our models to create personality traits
- Evaluating whether the emotional content conveyed over the orofacial area is preserved in the generated movements.

This work was funded by NSF (IIS 1718944)

Multimodal Signal Processing Lab (MSP)

Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas, Richardson, Texas - 75080, USA

Method

Discussion