### Style Extractor for Facial Expression recognition in the Presence of Speech

Ali N. Salman And Carlos Busso





THE UNIVERSITY OF TEXAS AT DALLAS



### Motivation



#### Facial Emotion Recognition (FER) is a hard problem

Prediction are not reliable during speech

#### Wide application domains

- Human-Computer/Robot Interaction
- Driver distraction
- Medical monitoring





### **Related Work**

#### Dynamic FER

 Emotions perceived from isolated frames is different from emotions perceived from watching corresponding video [Salman and Busso 2020]





| Label     | Set         | Precision | Recall | F1-Score |
|-----------|-------------|-----------|--------|----------|
| Happiness | Video/Video | 0.91      | 0.84   | 0.87     |
|           | Video/Frame | 0.67      | 0.97   | 0.79     |
| Anger     | Video/Video | 0.73      | 0.67   | 0.70     |
|           | Video/Frame | 0.55      | 0.14   | 0.22     |
| Sadness   | Video/Video | 0.77      | 0.79   | 0.78     |
|           | Video/Frame | 0.66      | 0.57   | 0.61     |
| Neutral   | Video/Video | 0.72      | 0.72   | 0.72     |
|           | Video/Frame | 0.54      | 0.77   | 0.63     |
| Average   | Video/Video | 0.78      | 0.76   | 0.77     |
|           | Video/Frame | 0.61      | 0.61   | 0.56     |







msp.utdallas.edu

Dallas

THE UNIVERSITY OF TEXAS AT DALLAS



Dallas

#### 4

# **Related Work**

#### Facial Regions

- Lower facial regions are greatly affected by speech articulation
  - Lower regions contain valuable features for emotion classification
  - Some emotions are better perceived in the lower regions [Hoffmann et. al. 2013, Busso and Narayanan 2006]
- Lower facial regions contain both emotional and lexical information
  - Separating emotion facial features from speech articulations is challenging



Activeness of different facial regions during speech

# **Related Work**



#### Lexical Dependent FER

- A phone or viseme dependent classifier can be used to increase the reliability of emotion recognition [Mariooryad and Busso 2013, Kim and Provost 2015]
- Another approach is to treat the lower and upper area and use a phoneme dependent classifier on the lower region [Kim and Provost 2019]
- Transcriptions can be costly (manual), unreliable (ASR), or not feasible to attain (no audio) in real world application

#### Blind-Lexical FER

- Separating the facial region into many area can improve accuracy [Kim and Provost 2015]
- Using an asymmetric bilinear factorization model to extract emotion information without knowing the phonetic labels [Mariooryad and Busso 2015].



### Goal



#### Dynamic FER

- Static FER have restriction in real-world application
- Aggregating features collected from static FER systems is not enough to capture temporal information

### Blind-Lexical compensation

- Transcriptions can be costly and might not be available during real world application
- The use of transcription during training is valid
- Separate the emotional and lexical attribute

### End-to-End Image FER

 Using just image sequences as input and not relying on special hardware to capture (i.e., motion capture, depth sensing)





msp.utdallas.edu

Emotio

# **Proposed Model**



#### Feature Extraction

Extracts facial features using a CNN model

#### Style Extractor

 Separates the emotional facial information (i.e., style) from the lexical facial information (i.e., content)

#### Fusion Model

 Combines the features extractor and style extractor features to predict the emotion





### Feature Extraction



#### VGG16 architecture

- Initialize model using VGG-Face weigths [Parkhi et. al. 2015]
- Train the model for the emotional classes using categorical cross-entropy.

#### Static Features

 The first fully connected layer (red arrow) to represent the features





# **Style Extraction**





- FC (blue) and LSTM (orange) model to transform the input sequence from emotional to neutral
- The model also predicts the phoneme for each

Lexical Un

- The model takes a facial mesh as input and normalize the emotional features
- We use the difference between the input mesh and output mesh to represent the style
- Additionally, we predict the phoneme for each mesh to assist in learning phoneme dependent features





# **Style Extraction**



#### Data

- Manually align emotional and neutral videos that contain the same lexical contents but different emotions
  - Alignment at the phone level
- Z-Face [Jeni et. al. 2015] to extract the 3D facial mesh
- Use the 3D mesh of the aligned pairs (emotional to neutral) to train the model



No Audio





### **Fusion Model**



#### Feature Extraction

Extracts facial features using a CNN model

#### Style Extractor

- Separates the emotional facial information (i.e., style) from the lexical facial information (i.e., content)
- Fusion Model
  - Combines the features extractor and style extractor features to predict the emotion





# AffectNet Database



### AffectNet [Mollahosseini et. al. 2019]

- Collected from the internet using major search engines
  - 1250 emotional keywords in 6 different languages
- Over 1 million images
  - Around 440 thousand are manually annotated with seven discrete emotional
  - Valence and arousal annotation (not used in this study)
  - 425x425 average resolution
- We consider 4 classes (happiness, anger, sadness, and neutral state)
  - Downsample to 24,882 images per class (training set)
    - Random split 80/20 for training/validation
  - Validation set as testing set
- This dataset is used to train the feature extractor





| Neutral   | 75374  |  |  |
|-----------|--------|--|--|
| Нарру     | 134915 |  |  |
| Sad       | 25959  |  |  |
| Surprise  | 14590  |  |  |
| Fear      | 6878   |  |  |
| Disgust   | 4303   |  |  |
| Anger     | 25382  |  |  |
| Contempt  | 4250   |  |  |
| None      | 33588  |  |  |
| Uncertain | 12145  |  |  |
| Non-Face  | 82915  |  |  |
| Total     | 420299 |  |  |
|           |        |  |  |

Number of images for each discrete label

THE UNIVERSITY OF TEXAS AT DALLAS

# **MSP-IMPROV** Dataset

### MSP-IMPROV [Busso et. al. 2017]

- Multimodal emotional database
  - 12 subjects (six males, six females)
  - 1,440 x 1,080 resolution
  - Same sentences are spoken with different target emotions
    - Improvisations are used before/after to the target sentences to capture naturalistic data
  - Target sentences are manually annotated in different modalities
    - 652 speaking turns
    - We only consider video-only annotations (happiness, anger, sadness, and neutra state)
- This dataset is used to train the style extractor







msp.utdallas.edu

Dallas

# **CREMA-D** Dataset

### **CREMA-D** [Cao et. al. 2014]

- Multimodal emotional dataset
  - 91 subjects (six males, six females)
  - 960 x 720 resolution
  - Same sentences are spoken with different target emotions
  - Target sentences are manually annotated in different modalities
    - 7,442 annotated clips
    - We only consider 5,093 video-only labeled clips (happiness, anger, sadness, and neutral state)
    - 81/4/7 actors for train/validate/test
- After training the style/feature extractor models we use this dataset to train the fusion model









### **Results - Feature Extractor**



#### Feature Extractor

- Trained on a subset of the AffectNet database
- Down sampled to match the minimum number of samples in a class
- Results are reported on the validation set, which we use as our testing set

| Emotion   | Precision<br>[%] | Recall<br>[%] | F1-score<br>[%] |
|-----------|------------------|---------------|-----------------|
| Happiness | 89.8             | 91.0          | 90.5            |
| Anger     | 76.7             | 71.2          | 73.9            |
| Sadness   | 75.8             | 71.6          | 73.7            |
| Neutral   | 63.7             | 70.1          | 67.0            |
| Average   | 76.5             | 76.2          | 76.3            |

Performance of the static FER system in the feature extractor model. The reported values are on the AffectNet corpus.



### **Results - Style Extractor**

### Style Extractor

- We expect that the mesh from the style extractor looks more neutral than the original input
- We trained a vanilla 3D mesh classifier on MSP-IMPROV
  - model achieved 60% F1-score
- Testing the 3D mesh emotion classifier on CREMA-D
  - Around 4% of the original meshes are classified as neutral
  - 31% of the normalized meshes are classified as neutral

| Emotion\Mesh | Original | Normalized |  |
|--------------|----------|------------|--|
| Happiness    | 15,886   | 3,332      |  |
| Anger        | 191,309  | 122,075    |  |
| Sadness      | 332,825  | 260,350    |  |
| Neutral      | 25,060   | 179,323    |  |





Dallas

### **Results - Proposed Model**

#### Proposed Model

- To assess the effectiveness of the proposed approach we train two models
  - With the Style Extractor (Model [A])
  - Without the Style Extractor (Model [B])
- The model with the Style Extractor performs 7% better (absolute)
- The Style Extractor helps with generalization
  - Similar performance on train set (A vs B)
  - Smaller gap between train and validation

| Emotion   | Precision |          | Recall   |          | F1-score    |  |
|-----------|-----------|----------|----------|----------|-------------|--|
| Model     | A<br>[%]  | B<br>[%] | A<br>[%] | B<br>[%] | A B [%]     |  |
| Happiness | 87.8      | 81.1     | 83.0     | 83.5     | 85.3 🔶 82.3 |  |
| Anger     | 89.2      | 51.0     | 50.9     | 65.0     | 64.8 ← 57.1 |  |
| Sadness   | 78.6      | 83.0     | 60.5     | 52.3     | 68.4 🔶 64.1 |  |
| Neutral   | 68.8      | 65.0     | 89.9     | 65.0     | 78.0 🔶 65.0 |  |
| Average   | 81.1      | 70.0     | 71.0     | 66.4     | 74.1 🔶 67.1 |  |

Performance of the proposed FER system for videos on the test set of the CREMA-D corpus.

THE UNIVERSITY OF TEXAS AT DALLAS





### Conclusion



#### Proposed Approach

- FER system that does not require transcription during inference
- Style extractor that extracts the emotional features, not speech articulations

#### Future Research

- Find ways to align/pair data for training
- Improve the feature extractor by extracting spatial-temporal features
- Improve the style extractor by using images instead of 3D mesh





msp.utdallas.edu

**ID** THE UNIVERSITY OF TEXAS AT DALLAS

### Thank you

### • This work was funded by NEC Foundation and NSF under Grant IIS-1718944







### Our Research: msp.utdallas.edu

THE UNIVERSITY OF TEXAS AT DALLAS



msp.utdallas.edu

T Dallas