UT DALLAS

Lipreading Approach for Isolated Digits Recognition under Whisper and Neutral Speech

Fei Tao and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas Richardson, Texas 75080, U.S.A.

Abstract

Background:

 Whisper is a speech production mode with low energy and lack of vocal cord vibrations

The acoustic differences degrade the performance of ASR

Proposed Solution:

- Visual features are applied to improve whisper recognition
- Facial features are less affected by whisper speech [Tran et al, 2013]
- Previous work with one subject proved the concept [Fan et al., 2011]


Word accuracy using HMM (Fan et al., 2011)

stream	training	test	Word Accuracy	
audio data	neutral	neutral	98.7%	
audio data	whisper	whisper	83.3%	
audio data	neutral	whisper	42.7%	
video data	neutral	neutral	70.7%	
video data	whisper	whisper	68.0%	
video data	neutral	whisper	54.7%	
combined (best)	neutral	whiepor	79.7%	

Data Preparation

Audiovisual Whisper (AVW) Corpus

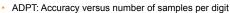
- 40 Speakers (20 male, 20 female)
- Isolated digits, read sentence and spontaneous
- Recorded with whisper and neutral speech
- Include data from audio and video channels
- Study relies on isolated digits
- 1-9, "zero" and "oh"

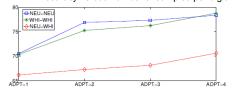
Data Preparation

Video Processing and Feature Extraction

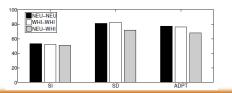
- We identify 66 facial landmarks using CSIRO face analysis SDK
- We normalize head pose using an affine transformation (from facial landmarks)
- Quality check: second facial landmark detector (mouth corners and nose tip)
- From ROI, we estimate 25 DCT plus 5 geometric features
- 90D feature vector [25-DCT + 5D-distance], plus Δ , and $\Delta\Delta$

Experimental Evaluation


Recognition Task Setting:


- HMM is used for the recognition task (left-to right, 10 states)
- Conditions (leave-one-out cross validation)
- Speaker independent (SI)
- Speaker dependent (SD)
- We explore adaptation schemes (MAP +MLLR)

Results:


- SD: accuracy in matched conditions is above 80%
- ADPT: Adaptation helps in reducing gap between SD and SI

Train	Test	SI(%)	SD(%)	ADPT(%)
Neutral	Neutral	52.93	80.78	77.31
Whisper	Whisper	52.34	82.64	76.24
Neutral	Whisper	50.87	71.85	68.14

ADPT: Results with three samples per digits

Discussion

Conclusions:

- HMM approach with geometric and appearance based features
- Lipreading approach is a feasible alternative to improve the performance of whisper speech recognition.

Future Directions

- Fuse the proposed system with acoustic features (accuracy ~83%)
- Explore the use of phoneme/viseme models to extend to large vocabulary continuous speech recognition

References:

X. Fan, C. Busso, and J.H.L. Hansen, "Audio-visual isolated digit recognition for whispered speech," in European Signal Processing Conference (EUSIPCO-2011), Barcelona, Spain, August-September 2011, pp. 1500–1503.
T. Tran, S. Mariooryad, and C. Busso, "Audiovisual corpus to analyze whisper speech," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2013), Van-Couver, BC, Canada, May 2013, pp. 8101–8105.

This work was funded by NSF (IIS-1217104) and Samsung