

Improving Boundary Estimation in Audiovisual Speech Activity Detection Using Bayesian Information Criterion

Fei Tao John H.L. Hansen Carlos Busso

Multimodal Signal Processing (MSP) Laboratory, Center for Robust Speech Systems (CRSS), Department of Electrical Engineering, The University of Texas at Dallas, Richardson TX 75080, USA

Multimodal Signal Processing Laboratory

msp.utdallas.edu

Introduction

- Speech Activity Detection (SAD) plays an important role in speech-based interfaces
- Audio-only SAD (A-SAD) may fail
 - Noise
 - Different speech mode (e.g. whisper speech)
- Introduce Visual SAD (V-SAD) to improve SAD
 [Aubrey et al. (2007), Joosten et al.(2013)]

- One key problem exists in V-SAD system was the precise detection of boundaries
 - Lip movement associated with non-speech event (e.g. lip smacking, laughing)
 - Anticipatory facial movements (e.g. 10 ms)
 - Low video resolution (30 fps vs. 100 fps)

Bayesian Information Criterion (BIC) to improve boundary detection

Previous Work on SAD

- Supervised V-SAD
 - Aubrey et al (2007) applied HMM in developing V-SAD system;
 - Joosten et al (2013) applied SVM classifier
- AV-SAD Fusion
 - Takeuchi et al. (2009) combined the V-SAD and A-SAD decision boundaries using logical operators.
 - Almajai and Milner (2008) concatenated acoustic and visual features.
- No one has worked on improving the boundary detection

AV-SAD System: Audio Component

- Framework proposed by Sajadi and Hansen (2013)
- Audio feature (5-D)
- Principal Component Analysis (PCA) on audio feature: I D combo feature

Unsupervised A-SAD

Unsupervised clustering with EM approach

AV-SAD System: Video Component Video feature [Tao et al (2015)]:

- Optical flow: OFx, OFy and OFx+OFy (OFxy)
- Geometric feature: height (H), width (W), W x H and H+W
- Short term statistics (0.3 s window)

Feature Set

Set	OFx	OFy	OFxy	Н	W	W+H	WxH
Temporal Variance	\checkmark						
Zero Crossing Rate	\checkmark						
Speech Periodic Characteristic	\checkmark						
First Order Derivative				\checkmark	\checkmark	\checkmark	\checkmark

25-D feature in total

Proposed Approach

- Unsupervised A-SAD and V-SAD [Sajadi and Hansen (2013), Tao et al (2015)]:
- Audio-visual fusion
 - Logical fusion: "AND" and "OR"
- BIC refine

Bayesian Information Criterion (BIC) Refine

The BIC is a criterion used to select a model among potential candidate models [Zhou and Hansen (2005)]

- Hypothesis I (HI): one single distribution
- Hypothesis 2 (H2): bimodal distribution
- $\Delta BIC = BIC(H2) BIC(H1)$

$BIG(H_2) = \frac{1}{2} \frac{d}{2} N \log \frac{2}{2} \frac{1}{2} \log \frac{1}{2} \log \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \log \frac{1}{2} \frac{1}{2} \frac{1}{2} \log \frac{1$

d is the feature dimension $\widehat{\Sigma}$ is covariance of N frames,

Bayesian Information Criterion (BIC) Refine

Focus on transition area

- Potential boundary given by previous steps
- ΔBIC computed for each frame in search window
- Extra frames before and after search window

Bayesian Information Criterion (BIC) Refine

Focus on transition area

- Potential boundary given by previous steps
- ΔBIC computed for each frame in search window
- Extra frames before and after search window

Corpus Description

- MSP Audio-visual Whisper (MSP-AVW) corpus
 - 20 males and 20 females
 - I 20 TIMIT sentences per speaker (60 in neutral, 60 in whisper)
 - Audio: SHURE 48 KHz close-talk microphone
 - Video: high definition SONY cameras (1440 × 1080) at 29.97 fps

Experiment and Result

- Performance without BIC
 - Whisper decreases performance by ~20%
 - V-SAD is robust to different modes
 - Under neutral condition, the fusion decreases the performance by ~5%
 - The ground truth of the labels was annotated based only on audio
 - Original sampling frequency is low (29.97 fps)
 - Under whisper condition, the fusion improves the performance by ~8%

Modality	Set	Acc [%]	Pre [%]	Rec [%]	F [%]	
A-SAD	Nsen	94.05	97.15	89.85	93.35	
	Wsen	67.96	61.02	88.65	72.28	
V-SAD	Nsen	78.06	75.11	89.45	80.40	$ \rangle$
	Wsen	78.20	72.69	89.10	80.06	
AV-SAD	Nsen	89.47	97.90	79.93	88.00	$\langle \rangle$
	Wsen	81.28	81.73	79.21	80.45	

Performance with BIC:

Apply BIC on detected boundary from AV-SAD

	Set	ACC [%]	Pre [%]	Rec [%]	F [%]	
AV-SAD	Nsen	89.47	97.90	79.93	88.00	
	Wsen	81.28	81.73	79.21	80.45	
AV-SAD	Nsen	91.11	97.47	83.77	90.10	
+ A-BIC	Wsen	82.91	84.47	79.48	81.90	Ń
AV-SAD	Nsen	88.53	92.22	83.18	87.47	
+ V-BIC	Wsen	78.67	76.63	80.54	78.53	
AV-SAD	Nsen	91.25	97.49	84.05	90.27	
+ AV-BIC	Wsen	82.87	83.76	80.37	82.03	4

- A-BIC improves the system:
 - For speech detection, ~2% absolute improvement
- V-BIC impairs the system
 - Modalities mismatch
- AV-BIC achieves best performance on speech detection

Median Local Boundary Mismatch

- Local Boundary Mismatch (LBM)
 - the mismatch frames between the detected boundary and ground truth in local regions

- Median Local Boundary Mismatch (MLBM)
 - Represents the boundary detection performance
 - Lower is better

Boundary detection performance:

Up-sampling to 100 fps for MLBM comparison

	Set	MLBM [fps]	
AV-SAD	Nsen	35.00	
	Wsen	64.00	
AV-SAD	Nsen	25.00	\mathcal{N}
+ A-BIC	Wsen	56.00	
AV-SAD	Nsen	42.00	N
+ V-BIC	Wsen	71.00	
AV-SAD	Nsen	25.00	M
+ AV-BIC	Wsen	53.00	4

- A-BIC improves the system:
 - For MLBM, relatively improve 28.5% under neutral and 2.5% under whisper
- V-BIC impairs the system
 - Modalities mismatch
- AV-BIC achieves best performance on boundary detection

Conclusion and Future Work

Conclusion

- AV-SAD is explored showing that visual modality will improve robustness under whisper condition
- Proposed a approach to improve boundary detection in SAD by BIC
- AV-BIC achieves best performance
- Future Work
 - Better fusion approach need be explored

THANK YOU !

QUESTION?

msp.utdallas.edu