

 Conventional neurological disorder diagnosis methods require inconvenient and expensive devices

Goal:

围

SAINT MARY'S

COLLEGI

Stand-alone speech-based assessment tools for portable devices

PATAKA for ASR:

Background:

- Diadochokinetic test consisting of fast repetitions of "PA-TA-KA"
- It brings challenges for ASR
- Alter, replace, insert or skip syllables

Solution:

Build an ASR-based application specific for "PA-TA-KA"

Task Design and Data Collection

Set

Derive reliable biomarkers of motor speech

disorders using few minutes of speech recordings.

Define 7 specific tasks for speech collection

Task

- Participate, Application, Education, 1 Difficulty, Congratulations, Possibility, Mathematical, Opportunity
- Put the book here 2
- 3 We saw several wild animals
- 4 | PA 5

ID

KA 6 PA-TA-KA 7 AAAHHH

Recordings were manually transcribed

d x	Set
	Concussed
a Pa-Ta{Kaj	Non-Concussed
	Total
	PD
0	Non-PD
Interface	Total

mTBIs Dataset

- 580 youth athletes (boxing, football)
- 95 reported concussion symptoms
- Collect before season as baseline; repeat protocol after competition for comparison

- Data collected from PD patients and their spouse (age matched control group)
- 17 participants collected; 10 of them were with Parkinson

Experimental Evaluation

Recognition Task Setting:

- Pocketsphinx is used for building an ASR on mobile device Acoustic model
- Syllable model for PA, TA and KA
- Filler model and background model
- GMM-HMM trained with 3 states left-to-right structure • 13 MFCC + \triangle + $\triangle \triangle$ = 39D vector
- Language model
- Tri-gram, we learn common errors from training set
- 60% for training, 40 % for testing

Syllable Recognition:

Set	Conditions	SER [%]	Boundary Detection			
			Pre	Rec	F	
Con.	Concussed	2.4	0.92	0.48	0.63	
	Non-Concussed	3.5	0.91	0.48	0.63	
PD	PD	7.9	0.82	0.46	0.59	
	Non-PD	6.2	0.85	0.46	0.60	

SER: syllable error rate

Target Speech Biomarkers:

- The number of repetitions of "PA-TA-KA"
- The Diadochokinetic (DDK) rate
- The number of syllables per second
- The DDK period
- The standard deviation of DDK rate
- The degree of variation in DDK period
- Estimate the number of "PA", "TA", "KA" and "PATAKA", measured by MAD score

 $\sum_{i=1}^{L} |N_{true} - N_{detection}|$ MAD = I.

Set	Conditions	PA	TA	KA	ΡΑΤΑΚΑ
Con.	Concussed	0.20	0.08	0.12	0.32
	Non-Concussed	0.27	0.20	0.24	0.73
PD	PD	0.75	0.50	0.38	0.75
	Non-PD	0.25	0.38	0.25	0.63

- We presented a task-specific ASR system for the popular test consisting of repetitions of syllables "PA-TA-KA".
- We are collecting more data from PD patients

Reference:

C. Poellabauer, N. Yadav, L. Daudet, S. Schneider, C. Busso, and P. Flynn, "Challenges in concussion detection using vocal acoustic biomarkers," IEEE Access, vol. 3, pp. 1143-1160, August 2015.

This work was funded by the NSF under grant IIS-1450349.

Recording Speech

INTERSPEECH

16

87

103

4

7

11

95

485

580

7

10

17

175

16.4

16.6

65.6

54.1

58.5

aller

min

23

max

24 14

22 14

24 14

82 57

76

82 23

Age

79

398

477

3

3

6