Aligning Audiovisual Features for Audiovisual Speech Recognition

Fei Tao and Carlos Busso

Multimodal Signal Processing (MSP) Laboratory Department of Electrical Engineering, The University of Texas at Dallas, Richardson TX-75080, USA

THE UNIVERSITY OF TEXAS AT DALLAS

Audiovisual approach for robust ASR

DNN emerges for AV-ASR

Neti et al. [2000] GMM-HMM

Ngiam et al. [2011] Multimodal deep learning Petridis et al. [2018] End-to-end AV-ASR

Introduction

3

- Fusing audiovisual features followed static fashion
 - Linear interpolation (extrapolation) to align
- Audiovisual modalities fusion on decision, model or feature levels.

Phase between lip motion and speech [Tao et al., 2016]

 Bregler and Konig [1994] show the best alignment was with a shift of 120 milliseconds

However, phase is time variant so this may not be the optimum approach

Motivation

• Audiovisual features concatenated frame-by-frame:

- > For some phonemes, lip movements precede speech production
- For other phonemes, speech production precede lip movements
- In some cases, audiovisual modalities are well aligned [Hazen, 2006]
 - Pronounce the burst release of /b/
- Co-articulation effects and articulator inertia may cause phase difference
 - Lip movement can precedes audio for phoneme /m/ in transition /g/ to /m/ (e.g., word segment)

Deep Learning for Audiovisual

Deep learning for audiovisual ASR:

6

- > Ninomiya et al. (2015) extracted bottleneck feature for audiovisual fusion
- Ngiam et al. (2011) proposed bimodal DNN for fusing audiovisual modalities
- Tao et al. (2017) extended to bimodal RNN on AV-SAD problem for modeling audiovisual temporal information
- Rely on linear interpolation to align audiovisual features

Proposed Approach: Learn alignment automatically from data using attention model

Outline

- **1.** Introduction
- **2.** Proposed Approach
- **3.** Corpus Description
- 4. Experiment and Result
- **5.** Conclusion

Proposed Framework

- Proposed approach relies on attention model
- Attention model learns alignment in sequence-to-sequence learning
 - > Output is represented as linear combination of input at all time points
 - > Learn the weights in linear combination following a data-driven framework

Training AliNN

Training AliNN on the whole utterance is computationally expensive

We segment the utterance into small sections

- Length of each segment is 1 sec, shifted by 0.5 sec
- Sequence is padded with zeros if needed

Corpus Description

CRSS-4ENGLISH-14 corpus:

- > 55 females and 50 males (60 hrs and 48 mins)
- Ideal condition: high definition camera and close-talk microphone
- Challenge condition: tablet camera and tablet microphone
- Clean section (read and spontaneous speech) and noisy section (subset of read speech)

Audiovisual Features

- Audio feature: 13D MFCCs feature (100 fps)
- Visual feature: 25D DCT + 5D geometric distance
 - > 30 fps for high definition camera
 - > 24 fps for tablet camera

17

Experiment Setting

• 70 speaker for training, 10 for validation, 25 for testing

- Gender balanced
- Train with ideal condition under clean environment
- Test with different conditions under different environments

Two backend:

- GMM-HMM: augmented with delta and delta-delta information
- DNN-HMM: 15 context frames
- Data of tablet (24 fps) is linearly interpolated to 30 fps
- Linear interpolation for pre-processing as baseline
- Focus on word error rate (WER)

Experiment Results

- Under ideal condition, the proposed front-end always achieves the best performance
- Under tablet condition, the proposed front-end achieve the best performance except GMM-HMM backend
 - Linear interpolate tablet data to 30 fps may impair the advantage of AliNN

Front-end	MODEL	Ideal Conditions		Tablet Conditions	
		Clean [WER]	Noise [WER]	Clean [WER]	Noise [WER]
LInterp	GMM-HMM	23.3	24.2	24.7	30.7
AliNN	GMM-HMM	17.5	19.2	22.7	35.6
LInterp	DNN-HMM	4.2	4.9	15.5	15.9
AliNN	DNN-HMM	4.1	4.5	4.6	10.0

msp.utdallas.edu

19

Results Analysis

Front-end	MODEL	Ideal Conditions		Tablet Conditions	
		Clean	Noise	Clean	Noise
LInterp	GMM-HMM	23.3	24.2	24.7	30.7
AliNN	GMM-HMM	17.5	19.2	22.7	35.6
LInterp	DNN-HMM	4.2	4.9	15.5	15.9
AliNN	DNN-HMM	4.1	4.5	4.6	10.0

Conclusions

This study proposed the alignment neural network (AliNN)

- > Learns the alignment between audio and visual modalities from data
- Does not need alignment or task label

The proposed front-end is evaluated on CRSS-4ENGLISH-14 corpus

- Large corpus for AV-LVASR (over 60h)
- The proposed front-end outperforms simple linear interpolation under various conditions
- Future work will extend approach to end-to-end framework

msp.utdallas.edu

EUNIVERSITY OF TEXAS AT DALL

References:

➤C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin, D. Vergyri, J. Sison, A. Mashari, and J. Zhou, "Audio-visual speech recognition," Workshop 2000 Final Report, Technical Report 764, October 2000.

➢J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, "Multimodal deep learning," in International conference on machine learning (ICML2011), Bellevue, WA, USA, June-July 2011, pp. 689–696.

➢S. Petridis, T. Stafylakis, P. Ma, F. Cai, G. Tzimiropoulos, and M. Pantic (2018). End-to-end audiovisual speech recognition. arXiv preprint arXiv:1802.06424

➤T.J. Hazen, "Visual model structures and synchrony constraints for audio-visual speech recognition," IEEE Transactions on Audio, Speech and Language Processing, vol. 14, no. 3, pp. 1082–1089, May 2006.

➢C. Bregler and Y. Konig, ""Eigenlips" for robust speech recognition," in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1994), Adelaide, Aus- tralia, April 1994, vol. 2, pp. 669–672.

➢F. Tao, J.H. L. Hansen, and C. Busso, "Improving bound- ary estimation in audiovisual speech activity detection using Bayesian information criterion," in *Interspeech 2016*, San Francisco, CA, USA, September 2016, pp. 2130–2134.

