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Abstract
Speech activity detection (SAD) is a key pre-processing step
for a speech-based system. The performance of conventional
audio-only SAD (A-SAD) systems is impaired by acoustic noise
when they are used in practical applications. An alternative ap-
proach to address this problem is to include visual information,
creating audiovisual speech activity detection (AV-SAD) solu-
tions. In our previous work, we proposed to build an AV-SAD
system using bimodal recurrent neural network (BRNN). This
framework was able to capture the task-related characteristics
in the audio and visual inputs, and model the temporal infor-
mation within and across modalities. The approach relied on
long short-term memory (LSTM). Although LSTM can model
longer temporal dependencies with the cells, the effective mem-
ory of the units is limited to a few frames, since the recur-
rent connection only considers the previous frame. For SAD
systems, it is important to model longer temporal dependen-
cies to capture the semi-periodic nature of speech conveyed in
acoustic and orofacial features. This study proposes to imple-
ment a BRNN-based AV-SAD system with advanced LSTMs
(A-LSTMs), which overcomes this limitation by including mul-
tiple connections to frames in the past. The results show that the
proposed framework can significantly outperform the BRNN
system trained with the original LSTM layers.
Index Terms: speech activity activation, advanced LSTM, bi-
modal RNN, audiovisual speech processing, deep learning.

1. Introduction
Speech activity detection (SAD) systems aim to discriminate be-
tween speech and non-speech segments. It is usually used as
a pre-processing step in speech-based human-computer inter-
face (HCI) or artificial intelligence (AI) products (e.g., in intel-
ligent personal assistant with speech capability such as Siri and
Alexa). SAD performance is important, since mis-detection of
speech segments will lead to mistakes in the following speech
processing steps, such as automatic speech recognition (ASR).
Background acoustic noise in real world will impair the per-
formance of the audio-only SAD (A-SAD). Introducing visual
information to a SAD system can lead to improvements in
speech detection performance and robustness against environ-
mental conditions [1, 2]. Conventional audiovisual SAD (AV-
SAD) systems rely on pre-defined rules to fuse the two modal-
ities, such as logical operations [3]. These rules provide a rigid
framework without the flexibility to model the temporal infor-
mation within and across modalities. Recent advances in deep
learning techniques provide appealing data-driven frameworks
to address this problem. The frameworks are flexible since the
models depend on the input data rather than pre-defined rules.

Tao and Busso [4] proposed a bimodal recurrent neural net-
work (BRNN) for modeling three important aspects: (1) the
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characteristics of the input feature space; (2) the relationship
between audio and visual modalities; and (3) the temporal in-
formation within the input sequences. The BRNN consists of
three recurrent neural networks (RNNs). The first two RNNs
process the input modalities, one for the audio features and one
for the visual features. These RNNs model the feature space
and the temporal dependencies within each modality. The hid-
den values from the top layers of these two RNNs are concate-
nated and used as input of a third RNN. The third RNN is able to
capture the relationship between modalities. The RNNs in the
BRNN framework relied on long short-term memory (LSTM)
to model temporal information. LSTM takes inputs from the
lower layer and current layer at the previous frame. While the
cells in the model are expected to capture the long and short
term dependencies, the explicit temporal link on only the previ-
ous frame reduces the capability of a LSTM to model temporal
dependencies beyond 100 frames [5]. An appealing solution
to improve the temporal modeling of the network is by consid-
ering temporal information from multiple frames in the past.
Previous studies have showed that a model can improve its per-
formance when the higher layer have access to longer contex-
tual information [5, 6]. Tao and Liu [7] proposed an advanced
long short-term memory (A-LSTM) layer, which takes inputs
from the lower layer and the current layer at several frames in
the past. The A-LSTM layer, therefore, offers better temporal
modeling capability than a standard LSTM layer [8].

For AV-SAD, extending the temporal modeling is impor-
tant as longer periodicity in the acoustic and visual features
is crucial to distinguish between speech and non-speech seg-
ments. This study proposes to explore the A-LSTM layers in
the BRNN system to improve the temporal dependency of our
AV-SAD system. We evaluate the proposed approach on the
CRSS-4ENGLISH-14 corpus under different conditions. The
proposed framework significantly improves the performance of
the AV-SAD system, with absolute gain of 1.1% on noisy data
recorded with mismatched channel conditions over a BRNN
system implemented with the original LSTMs.

2. Related Work
Introducing visual information can improve the performance
and robustness of speech-based systems [9–11]. This section
summarizes studies on AV-SAD systems, focusing on their
modeling frameworks.

Different schemes have been explored for audiovisual fu-
sion in the context of AV-SAD. Takeuchi et al. [3] proposed the
logical operations “AND” and “OR” to combine the decisions
from a A-SAD system and a visual-only SAD (V-SAD) system.
Almajai and Milner [12] used concatenated audio and visual
features to fuse the two modalities. Petsatodis et al. [13] de-
fined a rule for fusion, adding visual features only when the lips
were detected. Otherwise, their system relied only on the acous-
tic features. These fusion schemes provide rigid rules, which
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Figure 1: Data collection setting with the equipments used in
the recordings of the CRSS-4ENGLISH-14 corpus [22].

are not flexible to address different environmental conditions.
Buchbinder et al. [14] proposed to combine audio and visual
modalities relying on dynamic weights based on the signal-to-
noise-ratio (SNR) estimation. This scheme can provide flexi-
bility under different conditions. For example, when the speech
was noisy, the visual modality received a higher weight. How-
ever, this scheme relies on the accuracy of the SNR estimation
algorithm.

Deep learning techniques have shown advantages in many
areas of speech processing, since they provide powerful data-
driven frameworks to learn relevant patterns [15, 16]. Several
studies have explored SAD with DNN. Ryant et al. [17] fed
Mel frequency cepstral coefficients (MFCCs) to a deep neural
network (DNN). The result showed that a DNN can outperform
a conventional approach relying on Gaussian mixture model
(GMM). A DNN is a static model, which may not be suitable
for modeling dynamic information. Recurrent neural network
(RNN) was proposed to model the temporal information, which
is more suitable for a SAD task [18, 19]. Recently, end-to-end
frameworks relying on convolutional neural network (CNN)
were proposed to better capture high-level representations from
the raw input features. Zazo et al. [20] showed that the end-to-
end framework can outperform a DNN or RNN system trained
with handcrafted features. However, end-to-end frameworks are
computational expensive.

There are few studies on AV-SAD using deep learning
frameworks. Ariav et al. [21] relied on deep auto-encoder
(DAE) to fuse audio and visual modalities. However, the fu-
sion and classification systems were separately trained, where
the parameters may not be totally optimized. Tao and Busso [4]
proposed the BRNN framework which is able to model the fea-
ture space of each modality, to capture temporal dependency
of the sequence inputs, and learn the fusion scheme from the
data (Sec. 4.1). Our study builds upon this work, increasing
the temporal modeling capability of the BRNN system, which
is important to capture longer semi-periodic patterns in the au-
diovisual features that are characteristic of speech segments.

3. Database and Audiovisual Features
3.1. The CRSS-4ENGLISH-14 Corpus
The study relies on the CRSS-4ENGLISH-14 corpus [22]. The
corpus was collected in a ASHA certified sound booth by the
Center for Robust Speech Systems (CRSS) at The University of
Texas at Dallas (UTD). During the collection, the booth was
illuminated by two LED light panels providing uniform illumi-
nation (Fig. 1(a)). The corpus includes recordings from 442
subjects (217 females and 225 males), from speakers with the
following English accents: Australian (103), Indian (112), His-
panic (112) and American (115).

The data was recorded with multiple microphones and cam-
eras (Fig. 1(b)). This study uses the audios from two channels:
(1) a close-talking microphone (Shure Beta 53) placed close to
the subject’s mouth, and (2) a microphone in a tablet placed

about 150 centimeters from the subject (Samsung Galaxy Tab
10.1N). The recordings were collected at 44.1 kHz. This study
uses the videos from two channels: (1) a high-definition (HD)
camera (Sony HDR-XR100) placed beside the tablet, and (2)
the camera of the tablet. The HD camera has 1440 ⇥ 1080
resolution with 29.97 fps. The tablet camera has 1280 ⇥ 720
resolution with 24 fps. The subjects were asked to use a clap-
ping board at the beginning of the recordings to synchronize all
the channels. A monitor was placed in front of the speakers to
display the instructions for the subjects.

There were two sessions during the recording: clean and
noisy sessions. The clean session contains read and sponta-
neous speech of the subjects completing multiple tasks (see Tao
and Busso [22] for details). In the noisy session, a subset of the
prompted text used for the read speech was randomly selected,
and the subject was asked to read them again (no spontaneous
speech). This time, we played noise through a loudspeaker (Be-
olit 12) inside the sound booth. There were four types of noise:
home, office, shopping mall and restaurant. Playing noise in
the background is more realistic than artificially adding noise to
clean speech, as speech production changes in the presence of
noise to improve speech intelligibility (Lombard effect). All the
recordings were manually transcribed.

This study only uses the American speaker set to eliminate
the variability due to accent. We use data from 105 subjects (55
females and 50 males), since some videos were lost during the
recordings. The total duration of the data is 60 hours and 48
minutes. We split the data into three sets: train (70 subjects),
validation (10 subjects) and test (25 subjects) partitions. This
partition tries to keep the balance in the gender for each set.

3.2. Audiovisual Features
We adopt the audiovisual features used in our previous work [4].
The acoustic feature was proposed by Sadjadi and Hansen [23]
for their A-SAD system. It consists of five speech features:
harmonicity, clarity, prediction gain, periodicity and perceptual
spectral flux. Harmonicity measures harmonics-to-noise ratio,
and it is estimated by finding the relative height of the autocor-
relation peak in a fixed range. Clarity is computed as the rela-
tive depth of the minimum average magnitude difference func-
tion (AMDF) valley in the plausible pitch range, which provides
high values for speech segments. Prediction gain is the energy
ratio between the original signal and the linear prediction resid-
ual signal. Periodicity is computed from the harmonic product
spectrum (HPS). It is the product of the frequency-compressed
copies of the original spectrum. This feature captures the pe-
riodic characteristic which is an important indicator for speech
activity. Perceptual spectral flux captures the quasi-stationary
characteristic in speech.

For the visual feature extraction, we obtain the region of
interest (ROI), which corresponds to the mouth area. We rely
on the toolkit IntraFace [24] to obtain the landmarks for the
lips. We estimate the width, height, perimeter and area of the
mouth, which are referred to as geometric features. We also
calculate optical flow features on the ROI between two consec-
utive frames. We estimate the variance of the optical flow in
the horizontal and vertical directions. The overall movement
corresponds to the summation of the optical flow variances in
both directions. We referred to these three features as optical
flow features. We combine the geometric and optical flow fea-
tures forming a 7D feature vector. Since dynamic information
is closely related to speech activity, we compute three short-
term functionals based on the 7D original feature vector to cap-
ture dynamic information: zero crossing rate (ZCR), variance
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and speech periodic characteristic (SPC) (the details are de-
scribed in Tao et al. [2]). The short-term functionals are com-
puted within a window of nine frames, which is about 0.3 sec-
onds. The window size is determined to balance the tradeoff
between the resolution (short window) and estimation accuracy
(long window). We also consider the first order derivative of
the geometric features, which also provides dynamic informa-
tion. We append the derivative of the geometric features and
the overall optical flow to form a 26D visual feature (21D short-
term feature, 4D derivative, and 1D overall optical flow).

All the audiovisual features are z-normalized at the utter-
ance level to scale them into a similar range.

4. Proposed Approach
4.1. Bimodal Recurrent Neural Network
We adopt the BRNN framework proposed by Tao and Busso [4]
as a back-end for this study (Fig. 2(a)). The BRNN consists of
three RNNs. Two RNNs process the inputs, one for the acous-
tic features and one for the visual features. The two RNNs
model the feature space of each modality, relying on deep learn-
ing techniques. The recurrent layers in these RNNs can model
the temporal information within modalities. The hidden val-
ues from the top layers of these two RNNs provide a high-level
representation for each modality (including dynamic and static
information), capturing the discriminative patterns related to the
SAD task. The hidden values are concatenated together and fed
into a third RNN. The third RNN models the relationship across
audiovisual features. By adjusting the parameters of the RNNs,
the framework automatically tunes the weights associated with
each modality learning their temporal relations from the data.

4.2. Advanced LSTM
RNNs are commonly implemented with LSTMs [25]. A con-
ventional LSTM relies on cells to storage previous information
over time, where the gates control the information flow. Equa-
tion 1 shows that the candidate information of the cell, eCt, is
computed based on the output from the lower layer, xt, and the
hidden value of the current layer at the previous frame, ht�1.
WC and bC are the trainable weight matrix and the bias vector,
respectively. The cell information will be updated based on the
candidate information shown in Equation 2, where Ct�1 is the
cell information from the previous frame, ft is the forget gate
vector, and it is the input gate vector. The gate vector is a sig-
moid function with values close to either 1 or 0. The symbol
� represents element-wise multiplication (Hadamard product).
The cell is updated element by element, by replacing, keeping
or combining the previous information. This mechanism only
has a direct link between the current and previous frames. As
a result, the temporal modeling capability is limited, especially
for some tasks that have longer time dependencies such as SAD.

eCt = tanh(WC · [ht�1, xt] + bC) (1)

Ct = ft � Ct�1 + it � eCt (2)

To extend the temporal dependency modeled by a LSTM,
Tao and Liu [7] proposed the advanced LSTM (A-LSTM),
where Ct�1 in Equation 2 is substituted with C0, computed
following Equation 3. The parameter C0 is the linear combi-
nation of the cell values at several frames in the past, including
eCt in Equation 1. CT has the cell values at the selected time
points T . The variable wCt is a scalar computed with Equation
4, where W is a trainable parameter. The variable wCt works
as an attention model, weighting the cell values from previous
frames considered in the model. By combining the cell values

(a) BRNN framework [4]
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(b) Proposed BRNN with A-LSTM

Figure 2: The proposed bimodal RNN with A-LSTM. A(n) and
V (n) are acoustic and visual features at time t(n). O(n) is the
corresponding output. The dashed arrows represent the con-
catenation of hidden values from acoustic and visual modalities.
Figure (b) presents the implementation with A-LSTM (temporal
links are omitted).

at different frames, the current cell can model information from
multiple previous frames, improving the temporal dependency
in the models. Since W is a trainable parameter, the temporal
dependencies are automatically learned from the data.

C0 =
X

T

wCT ⇥ CT (3)

wCT =
exp(W · CT )P
T exp(W · CT )

(4)

4.3. BRNN with A-LSTM
This study extends the BRNN framework implemented with A-
LSTM layers. We denote this model advance bimodal recur-
rent neural network (A-BRNN). Figure 2(b) shows the imple-
mentation of the proposed models, omitting the temporal links.
Tao and Liu [7] observed that training an A-LSTM layer re-
quires high computational resources, since it has multiple con-
nections to previous frames. Therefore, we do not replace all
the LSTM layers with A-LSTM layers. The A-BRNN has three
sub-networks. The sub-network for the acoustic features has
four layers. The first two are maxout layers [26] with 16 neu-
rons. The third layer is the A-LSTM layer with 16 neurons. The
forth layer is a LSTM layer with 16 neurons. The sub-network
for the visual features has a similar structure, except it has 64
neurons per layer. The third sub-network also has four layers.
The first two layers are LSTM layers with 128 neurons. The
third layer is a maxout layer with 128 neurons. The last layer is
the softmax layer for the binary SAD task. We set T in Equa-
tion 3 equals to {t� 1, t� 6}, which implies that the A-LSTM
layer connects each cell with two frames: the previous frame
(T = t � 1) and six frames in the past (T = t � 6). We select
T = t�6 since it represents a frame 200ms in the past (30 fps),
which is a proper range for speech activity detection.
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5. Experiments and Results
We consider two channel conditions: high definition (HD) and
tablet (TG). HD data consists of the ideal scenario with audio
from the close-talking microphone and the video from the HD
camera. The TG data consists of a more realistic scenario with
the audio and video collected by the tablet. The audio data is
down-sampled to match the sampling rate of the video. While
it is possible to handle the asynchrony between audio and vi-
sual features [27], we do not attempt to synchronize the inputs,
leaving the temporal modeling to the A-BRNN framework. For
each channel, we have clean and noisy sessions. As a result, we
have four conditions in total, considering different channels and
recording scenarios: clean HD, noisy HD, clean TG and noisy
TG. The model is always trained with clean data using the HD
channel. We test the model with the four conditions, evaluating
the robustness of the proposed model to train-test mismatches.
We use the two-tailed z-test to assert whether differences in per-
formance are significant with p � value < 0.05.

The model proposed in Tao and Busso [4] was implemented
with bidirectional long short-term memory (BLSTM). The use
of BLSTM requires a delay to compute the backward LSTM,
which is not appealing for real-time applications. Therefore, we
reimplement the approach with LSTM, using this system as our
baseline. The baseline BRNN has the same network structure
described in Figure 2(b), except that all the recurrent layers are
LSTM layers. The parameters of the BRNN correspond to the
settings presented in Tao and Busso [4]. All the experiments are
implemented with Keras [28] using a 8G graphical card (Nvidia
GTX 1070). The optimizer is Adam [29], and the dropout rate
is set to p = 0.1.

5.1. Speech Activity Detection
The evaluation mainly focuses on challenging conditions for
SAD. We consider two datasets: (1) spontaneous speech in
clean environment (first four rows in Table 1), and (2) data un-
der noisy environment (last four rows in Table 1).

For spontaneous speech under clean condition, the pro-
posed framework outperforms the BRNN framework for the
HD and TG channels (0.3% and 0.5% absolute improvements
in F-score, respectively). The differences are statistically sig-
nificant. The comparison between the HD and TG channels
shows no significant difference (0.1% gap), indicating that our
audiovisual features are robust to channel mismatch.

The F-scores for the noisy condition are shown in the last
four rows of Table 1. As discussed on Section 3.1, this set only
has read speech. For the TG channel, the signal to noise ratio
(SNR) is low under the noisy condition, since the microphone in
the tablet is closer to the speaker playing the noise. The NIST
speech SNR tool [30] estimates that the average SNR for this
condition is 16.8 dB. The distribution of the SNR is provided
in Tao and Busso [31]. The performance of the baseline BRNN
model drops from 89.3% to 86.1%. The performance of an A-
SAD system using BLSTM was 69.6% in the TG noisy condi-
tion, which shows the benefits of using visual information [4].
The performance of the proposed A-BRNN model drops from
89.8% to 87.2%. The table shows that the A-BRNN framework
can outperform the BRNN by 1.1% (absolute), which is sta-
tistically significant. These results show the advantage of the
proposed approach. For the HD channel, the results for the A-
BRNN model is slightly better than the BRNN model, but the
differences are not statistically different. Notice that the micro-
phone is close to the subject’s mouth, about two meters from
the loudspeaker playing the noise. Therefore, the SNR is higher
than in the TG channel. Also, the lack of spontaneous speech in

Table 1: Performance of AV-SAD systems in terms of accu-
racy (Acc), precision (Pre), recall (Rec) and F1-score (F)
(‘HD’: close-talk microphone + HD camera; ‘TG’: sensors
from tablet; ‘C’: clean sessions; ‘N’: noisy session).

Env Approach Test Condition Acc[%] Pre[%] Rec[%] F[%]

C
BRNN

HD 90.1 94.5 84.8 89.4
TG 90.1 91.9 87.0 89.3

A-BRNN
HD 90.6 94.5 85.3 89.7
TG 90.4 92.3 87.4 89.8

N
BRNN

HD 93.3 93.0 94.1 93.5
TG 83.1 77.7 96.6 86.1

A-BRNN
HD 93.1 92.7 94.8 93.7
TG 84.6 79.4 96.8 87.2

Table 2: Specificity rate on non-speech segments with lip mo-
tion (‘HD’: close-talk microphone + HD camera; ‘TG’: sensors
from tablet; ‘C’: clean sessions; ‘N’: noisy session).

Approach
HD TG

C N C N
BRNN 94.2 93.1 94.7 89.0

A-BRNN 94.7 93.4 94.7 89.4

the noisy condition makes the SAD task easier than in the clean
condition, which only has spontaneous speech. Due to these
reasons, the F-scores for both methods are higher for the noisy
condition than for the clean condition.

5.2. Non-speech Segments with Active Lip Motion
We also evaluate the robustness of the proposed approach to lip
movements that are not associated to speech (smiles, lip-smack,
deep breath). These segments are challenging scenarios since
the lip movements are not related to speech activity. We manu-
ally identified 7,397 frames across speakers. We use the speci-
ficity rate, defined as true negative divided by the condition neg-
ative. The true negative represents the number of frames that is
correctly classified among the selected non-speech frames. The
condition negative represents the total number of non-speech
frames selected by the models. Table 2 reports the results,
which show that the A-BRNN model achieves the best results
under all conditions.

6. Conclusions
This study extended the bimodal recurrent neural network us-
ing A-LSTM layers. The proposed framework takes advan-
tage of the BRNN model, capturing the temporal dependencies
within and across modalities. The addition of A-LSTM lay-
ers in the recurrent networks improves the temporal modeling
of the models, which is important for speech activity detection.
The model effectively captures longer periodic patterns associ-
ated with speech activity in the acoustic and visual features. We
evaluate the proposed framework on the CRSS-4ENGLISH-14
corpus under difference channels and environmental conditions.
The results on the SAD tasks show that the proposed approach
can significantly outperform the BRNN implemented with the
original LSTM layer for challenging conditions such as sponta-
neous speech or noisy conditions. We also evaluated the robust-
ness of the proposed approach for non-speech segments with
lip movements. The A-BRNN model achieves the best perfor-
mance under all conditions.

The current implementation of our AV-SAD system only
uses the A-LSTMs in one of the layers of the audio and visual
RNNs (Fig. 2(b)). We expect that other configurations may
lead to better performance. For example, we can replace all
the LSTM layers for A-LSTM layers. We can consider more
frames in the past (Equation 3). We can consider bidirectional
A-LSTM. These alternative frameworks will require powerful
resources to train the AV-SAD system.
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