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ABSTRACT
Current automatic speech recognition (ASR) systems cannot recog-
nize whisper speech with high accuracy. ASR systems are trained
with neutral speech, which have significant acoustic differences
with whisper speech (i.e., energy, duration, harmonics structure, and
spectral slope). Given the limitations of speech-based systems to
process whisper speech, we propose to explore the benefits of visual
features describing the orofacial area. We hypothesize that the lips’
articulation between whisper and neutral speech is similar, provid-
ing a valuable whisper-invariant modality. This paper introduces the
first audiovisual corpus of whisper speech. While we are targeting
over 40 speakers, the current corpus has recordings from eleven sub-
jects who were asked to read TIMIT sentences, and isolated digits
alternating between neutral and whisper speech. The corpus also
includes spontaneous recordings, in which the subject answered a
series of general questions. The paper also analyzes an exhaustive
set of audiovisual features, including action units (AUs), lip spread-
ing, fundamental frequency, intensity, MFCCs, and formants. We
study the differences in the features’ distributions between whisper
and neutral speech using Kullback-Leibler divergence (KLD). Then,
we conducted statistical test to determine whether the differences
in the features are statistically significant. The results support our
hypothesis that visual features are less affected by whisper speech.

Index Terms— Audiovisual corpus, whisper speech

1. INTRODUCTION
Whisper speech is characterized by the absence of periodic excita-
tion, changes in energy and duration characteristics, shift of lower
formant locations, and changes in the spectral slope [1–3]. Given
these differences, the performance of speech systems such as au-
tomatic speech recognition (ASR) [1], speaker identification (SID)
[4, 5] or keyword spotting [6] significantly decrease in presence of
whisper speech. Recognizing whisper speech is important in situ-
ations when individuals give important private information such as
social security numbers, credit card numbers, or pin numbers in pub-
lic areas where such information is easily overheard. This problem is
also important for vocally impaired individuals such as heavy smok-
ers or quiet speakers. Likewise, recognizing the identity of people
who whisper is relevant in the area of national security and defense.

To address the intrinsic limitations of current speech systems
to process whisper speech, studies have proposed robust features
such as modified temporal patterns (m-TRAPs) [7], feature warp-
ing over Mel-frequency cepstral coefficients (MFCCs) [5] and model
adaptation schemes such as maximum likelihood linear regression
(MLLR) [1]. Others have considered alternative sensing technolo-
gies such as throat microphones [8]. We propose to explore addi-
tional modalities that are invariant to the changes observed in whis-

This work was funded by NSF (IIS-1217183) and Samsung Telecommu-
nications America.

per speech. In particular, we hypothesize that features describing the
appearance and displacement of the orofacial area will not be signif-
icantly affected by whisper speech. Studies have validated the ben-
efits of using audiovisual speech recognition, particularly when the
acoustic signal is noisy [9–11]. Also, the advent of laptops, tablets
and smart phones with frontal camera can facilitate the popularity of
audiovisual interfaces in future communication systems. Therefore,
using visual features is a viable method to improve the performance
of whisper speech recognition. Toward this goal, this paper intro-
duces the first audiovisual corpus for whisper speech, and our initial
analysis on the changes observed in acoustic and orofacial features
caused by whisper speech.

The audiovisual whisper (AVW) corpus currently contains
recordings from 11 subjects, who speak English as native language
(our goal is to collect over 40 individuals). The corpus contains au-
diovisual data of read and spontaneous speech in whisper and neutral
modes. The subjects read sentences and isolated digits (1-9, “zero”
and “oh”), and answered predefined questions in both modes. The
corpus is collected in a sound booth with 2 professional LED light
panels, providing ideal conditions for audio and video recordings.

We analyze the corpus to determine audiovisual features that
are more affected by whisper speech. First, we estimate the de-
viation in the distributions of an exhaustive set of acoustic and vi-
sual features caused by whisper speech. The analysis relies on the
Kullback-Leibler divergence (KLD). Then, we evaluate whether the
differences are statistically significant using matched pair two-tailed
t-test. Both analyses reveal that visual features are less affected by
whisper speech, supporting our hypothesis.

2. RELATION TO PRIOR WORK

Previous studies have identified significant differences between
whisper and neutral speech [1–3, 12]. These differences include
changes in the vocal excitation and vocal tract function [4]. For
example, studies have reported larger frequency shifts at lower
formant frequencies, and little or no shifts at high formant frequen-
cies [13, 14]. The differences between modes have stronger effects
on certain phonetic units [12, 15]. For example, consonants have
prolonged durations and their intensity depends on whether they
are voiced or unvoiced [12]. Fan et al. [15] studied the proper-
ties of whisper speech and the dependencies across speakers and
phonemes. The study concluded that compensation schemes should
consider speaker dependency.

Given the degradation on the speech signal, studies have pro-
posed schemes to compensate the mismatches introduced by the dif-
ferences in acoustic features [5, 7]. Jou et al. [8] proposed to use
complementary sensing technologies, such as throat microphone.
Our research explores visual features for whisper speech recogni-
tion. Our hypothesis is that facial features will not be significantly
affected by whisper speech. This hypothesis is not completely clear
since studies have reported adaptation strategies in visual modal-
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(a) Subject (b) Equipment
Fig. 1. Data recording in the sound booth.

ity in the presence of other vocal effort (e.g., hyper-articulation in
Lombard speech). For example, Garnier et al. [16] found that visual
features are subconsciously altered when there is a change in vocal
effort. This change occurs whether or not they are interacting with
another subject. However, we expect that the differences in facial
features between speech modes are less pronounced than the ones in
acoustic features.

In our previous work, we presented a preliminary evaluation
of audiovisual whisper speech recognition for isolated digits [17].
The approach was implemented with separate hidden Markov mod-
els (HMMs) for acoustic and visual modalities. By including the vi-
sual modality, the system improved the word accuracy from 42.7%
to 79.7%. While the results are impressive, the main limitation was
the limited corpus collected from a single subject with only 30 min-
utes per speech mode. This work motivates our group to design and
record the first audiovisual corpus of whisper speech, which we ex-
pect to make available to the community. This paper presents the
corpus and our initial analysis of acoustic and visual features.

3. DATABASE DESCRIPTION
This section introduces the audiovisual whisper (AVW) corpus,
which is designed and recorded to study the benefits of using visual
information to recognize whisper speech. The corpus consists of
read (i.e., sentences and isolated digits) and spontaneous (i.e., an-
swering to general questions) speech. While our goal is to record
over 40 subjects, the corpus includes audiovisual recordings from 11
speakers at the present time (8 males and 3 females). The subjects
are students at the The University of Texas at Dallas (UTD). All the
subjects speak English as native language.

Figure 1 describes the recording setting. The corpus is collected
in a 13ft × 13ft ASHA certified single-walled sound booth. The
audio is recorded with a close-talk microphone at 48 KHz. Two
high definition cameras are placed to capture frontal and side views
of the subjects (1440×1080 pixels, 29.97 fps). The cameras record
the participants’ upper body including shoulders and head (see Fig.
1(a)). The sound booth is illuminated with two professional LED
light panels (Fig. 1(b)). While we realize that portable devices in real
environment may not provide the quality of our data, our goal is to
collect audiovisual data under ideal conditions to study the benefits
of facial information in whisper speech recognition (e.g., no noise,
good lighting, frontal view).

The corpus is recorded in three parts with suitable breaks in be-
tween. In the first part, the subjects are asked to read sentences in
whisper and neutral mode. We selected 129 TIMIT sentences. A
fixed subset of 30 sentences are used to record read speech in both
whisper and neutral modes. This subset is used across speakers.
In addition, we randomly selected 60 sentences per subject which
are read in either whisper (30 sentences) or neutral (30 sentences)
modes. Altogether, each subject read 120 sentences, which were
presented in blocks of ten sentences alternating between modes –
ten sentences in neutral mode followed by ten sentences in whisper

Table 1. Questions used to elicit spontaneous speech
1. Describe your typical schedule during the summer.
2. If you could travel anywhere, where would it be and why?
3. Describe your favorite book or movie.
4. How do you like the weather in Texas?
5. When (What time during the year) do you like to take vacations and why?
6. How do you like to travel? (By air, boat, car, etc.)
7. What do you like about UTD?
8. What do you usually do in your spare time?
9. What do you think of Arnold Schwarzeneggar?
10. What kinds of food do you like and why?
11. Describe a sport or activity you like to watch or do.
12. Who is your favorite politician and why?
13. Where do you like to go off-campus and why?
14. If you could meet anyone in history that is no longer alive, who would it

be and why?
15. Describe your field of study.

mode. We implement this protocol to reduce the fatigue caused by
whispering over long periods, and the cognitive load associated with
switching too often between modes. In the second part, the sub-
jects are asked to read isolated digits (i.e., 1-9, “zero”, and “oh”).
Each digit is read ten times in each mode producing 220 samples per
speaker. Similar to the sentences, the order of the digits is random-
ized per subject and presented in blocks of ten, alternating between
modes. In the third part, we collect spontaneous speech. The sub-
jects are asked to respond to general questions (see Tab. 1). Each
subject selected 10 out of 15 questions. After the selection, the ques-
tions are randomized and presented alternating between whisper and
neutral modes. The average duration of their answers is 45 sec. The
duration of each session is approximately 1 hour, including breaks.
Some aspects of the protocol were adjusted as we collected the cor-
pus (e.g., fixing the common sentences that are read in neutral and
whisper mode across subjects, and the number of sentences and dig-
its). Therefore, some of the early recordings slightly deviate from
the described protocol.

The sentences, digits and questions are displayed in a screen us-
ing slides (see Fig. 1(b)). The background color of the slides is
used to indicate whether the material should be read with whisper
or neutral speech, which helps the subjects to use the right speech
mode. A ringing sound is produced whenever we presented a differ-
ent slide. This sound is recorded in a second channel and it is used
to segment the speech. Transcriptions for the sentences and digits
are extracted from the slides. The open-source software SAILAlign
is used to forced-align the transcription to the speech signal [18]. As
expected, the toolkit provides reliable alignment for neutral speech.
We observed some errors for whisper speech given the differences
in acoustic domain between speech modes. For this reason, some of
the sentences are not included in the analysis. As part of our future
work, we will transcribe the spontaneous portion of the recordings.

4. STUDY OF WHISPER AND NEUTRAL SPEECH
4.1. Feature extraction
The analysis compares visual and acoustic features under whisper
and neutral conditions. The visual features are extracted from the
frontal videos with the computer expression recognition toolbox
(CERT) [19]. The toolkit estimates some of the action units (AUs)
that define the facial action coding system (FACS) [20]. The AUs
describe the movement of individual or groups of facial muscles.
The study explores the AUs related to the lips area (see Tab. 2). In
addition to AUs, we estimate the horizontal mouth opening. CERT
provides the locations of the lips corners. The information is used
to estimate their distance, given in pixels. Given the differences in
facial anatomy between subjects, and their relative position with
respect to the camera, the horizontal lip distance is normalized.
For each subject, we estimate the average distance during neutral
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Fig. 2. Relative increase in KLD measurements, caused by whisper speech, across all acoustic (gray) and facial (black) features. Higher
values indicate a larger deviation between the features’ distributions in neutral and whisper speech (see Sec. 4.2).

Table 2. Facial features, which include action units (AUs) extracted
by CERT [19] and distance between lip corners.

action unit description action unit description

Action Units
AU 10 Lip Raise AU 23 Lip Tightener
AU 12 Lip Corner Pull AU 24 Lip Presser
AU 15 Lip Corner Depressor AU 25 Lips Part
AU 18 Lip Pucker AU 26 Jaw Drop
AU 20 Lip stretch AU 28 Lips Suck

Lip Features
Lip spreading Horizontal Lip Spreading

condition, which is used to divide the horizontal lip value for each
frame. Notice that the vertical opening of the mouth is given by
AU25 (see Tab. 2). Notice that lip spreading and lip aperture have
being considered to analyze visual features in Lombard speech [16].

The acoustic features include the exhaustive set of low level de-
scriptors (LLD) given for the Interspeech 2011 speaker state chal-
lenge [21]. The set includes spectral, prosodic and voice quality
features which are estimated using openSMILE [22] (see Tab. 3). In
addition, we estimate the first five spectral formants using Praat [23].

4.2. Analysis of Audiovisual Feature Distribution
The first part of the analysis consists in comparing the distribu-
tions of the audiovisual features in whisper and neutral speech. By
comparing the distributions, instead of second order statistics such
as means and variances, we expect to unveil the effect of whisper
speech on acoustic and visual features. The study relies on the
Kullback-Leibler divergence (KLD) (Eq. 1), which is used in infor-
mation theory to assess the similarity between two probability mass
functions (PMFs). KLD is a suitable metric to quantify the deviation
in various features caused by whisper speech. The features’ PMFs
are estimated using K-means algorithm. First, a single distribution
is estimated across the entire corpus including neutral and whisper
speech. Then, global, nonuniform bins are estimated using K-means
algorithms. While we achieved similar results for different values
of K, we report results using K = 40. These bins are then used to
estimate the features’ PMFs for each speech mode condition. This
analysis considers the entire corpus.

KLD(P ||Q) =
∑
i

ln(
P (i)

Q(i)
)P (i) (1)

The proposed approach estimates the relative increase in KLD
caused by whisper speech (i.e., ∆f

KLD – see Eq. 2). We split the

Table 3. Frame-level acoustic features, which include the low level
descriptors (LLDs) introduced in the Interspeech 2011 speaker state
challenge [21] and formants extracted with Praat [23]

Spectral LLDs
Rfilt AudSpec [X] RASTA-style filtered auditory spectrum bands 1-26 (0-8kHz)
MFCC [X] Mel-frequency cepstral coefficients 1-12
Fband [F1-F2] Spectral energy 25-650Hz, 1000-4000Hz
Spectral roll-off [X] Spectral roll-off point 0.25, 0.50, 0.75, 0.90
Spectral [statistic] Spectral flux, entropy, variance, skewness, kurtosis, slope
Formants [X] Spectral Formants 1-5
Prosody LLDs
AudSpec L1 Auditory spectrum L1-norm (loudness)
Rfilt AudSpec L1 RASTA-style filtered auditory spectrum L1-norm
RMS Energy RMS Energy
ZCR Zero-crossing rate (ZCR)
F0 Fundamental frequency
Voicing prob Voicing probability
Voice Quality LLDs
Jitter Frame-to-frame F0 deviations
∆ Jitter Frame-to-frame Jitter deviations
Shimmer Frame-to-frame amplitude deviations

corpus into two speaker independent partitions, one from five sub-
jects and the other from six subjects. One of the partition is used as
reference. For each feature f , we estimate the reference PMF, P fRef ,
by considering only its neutral samples. The second partition is used
to estimate the PMFs of neutral (P fN ) and whisper (P fW ) speech.
By having a reference distribution, estimated from neutral speech,
we can compensate for the differences in the intrinsic distributions
across features. Therefore, we can directly compare the values of
∆KLD estimated from different features. Notice that the higher the
values of ∆KLD , the stronger the differences in the features’ PMFs.
To maximize the usage of the corpus, we estimate this metric using
two-fold cross-validation. We report the average ∆f

KLD values.

∆f
KLD =

KLD(P fW ||P
f
Ref )−KLD(P fN ||P

f
Ref )

KLD(P fN ||P
f
Ref )

× 100 (2)

Figure 2 shows that acoustic features (gray bars) in whisper
speech present the largest deviations from neutral speech. Visual fea-
tures (black bars) are not as affected by the changes in speech modes
as the acoustic features. The AU with the highest deviation from
neutral speech is lip corner pull (AU12), which suggest some differ-
ences in articulation. However, the results agree with our hypothesis
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Fig. 3. Absolute t-values of the statistical test for all acoustic (gray) and facial (black) features. The rejection region is given when |t| > 2.228
(dashed line). Values in this region imply statistically significant differences in the features for neutral and whisper speech.

that visual features are more invariant to whisper speech. Features
describing the fundamental frequency are the ones with the highest
deviation from neutral speech. This result is expected given the lack
of voicing during whisper speech. We also observe some predicted
behaviors identified in previous work. For example, we observe that
low frequency formants (F1 and F2) are more affected by whisper
speech than higher formants (F3, F4, and F5) [13, 14]. Also, the en-
ergy in high frequencies (Fband 1k-4kHz) is less affected by whisper
speech than the energy in low frequencies (Fband 25-650Hz). This
result is consistent with the statistical test presented in Sec. 4.3 (Fig.
3). This result is expected since africatives, fricatives and stops are
less affected by whisper speech than vowels.

4.3. Statistical Analysis of Features’ Changes in Whisper Speech
The second part of the analysis addresses whether the differences in
the features between speech modes are statistically significant. To
compensate for the underlying lexical information, we consider only
the portion of the corpus with isolated digits. We conduct a matched
pair two-tailed t-test [24], in which the digit is the matched variable.
Given that there are 11 digits (1-9, “zero” and “oh”), the t-test has
10 degrees of freedom. We estimate the t statistic for each feature
using Eq. 3,

t =
d̄

σd/
√
n
≈ d̄

sd/
√
n

(3)

where d̄ and sd are the sample mean and standard deviation of the
differences in the features in neutral and whisper speech, for each of
the digits. By setting the p − value = 0.05, the rejection region
|t| > tα/2 for the null hypothesis (i.e., |µNdigit − µWdigit | = 0) is
any t with absolute value greater than 2.228 (dashed line in Fig. 3).
The phonetic alignment is used to remove the segments with silences
at the beginning and ending of the samples.

Figure 3 shows the t scores for each of the audiovisual features.
Most of the acoustic features (gray bars) present significant differ-
ences in the presence of whisper speech. In contrast, most of our
visual features (black bars) are below the rejection region, which in-
dicates that there are no enough evidences to reject the hypothesis
that the patterns are similar in both speech modes. Only four vi-
sual features are found in the rejection region, with two of them very
close to the critical t value. AU[12] and Lip spreading are the vi-
sual features with the highest t values. However, the t value for lips
part (AU25) is out of the rejection region. While the lip spreading
(i.e., horizontal distance) is affected by whisper speech, the lip aper-
ture (i.e., vertical distance) presents similar patterns in both speech

modes. Unfortunately, the features do not provide details about lip
protrusion.

The results of the statistical test provide similar insights to the
ones observed in the KLD analysis (Sec. 4.2 – Fig. 2). For ex-
ample, we observe that the t values for the first two formants are
higher than the ones for higher formants. Furthermore, we observe
that many spectral values are greatly affected by whisper speech.
This is clearly observed for MFCCs, for which all of the coefficients
present statistically significant differences (also consistent with Fig.
2). This result is relevant because current ASR systems are built with
MFCCs. Therefore, it is important to identify alternative features for
automatic whisper speech recognition. Visual features may be the
answer, as suggested by these results.

5. CONCLUSION

This paper presented the first audiovisual whisper database consist-
ing of read (sentences and isolated digits) and spontaneous speech
in both neutral and whisper modes. We analyzed the differences
observed in audiovisual features during neutral and whisper speech.
The study relies on KLD and matched pair two-tailed t-test. The
analyses show that visual features are less affected by whisper
speech than acoustic features. For speech features, the results agree
with findings observed in previous studies (e.g., patterns in formants
and energies in frequencies). For visual features, we observe that
most of the differences between modes are observed in lip spread-
ing. Other aspects describing the orofacial area are preserved during
whisper speech.

Building upon this work, our next step is to gather more data and
train an ASR system for whisper speech using audiovisual features.
We expect to achieve similar results as the ones presented in our
pilot experiment [17], which suggested an important improvement
in whisper recognition when the visual features were included. As
mentioned, our goal is to collect data from over 40 subjects, which
will provide the necessary resources to systematically evaluate out
multimodal solution. We are particularly interested in recognizing
spontaneous speech, which will be the most challenging task.
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[22] F. Eyben, M. Wöllmer, and B. Schuller, “OpenSMILE: the
Munich versatile and fast open-source audio feature extractor,”
in ACM International conference on Multimedia (MM 2010),
Firenze, Italy, October 2010, pp. 1459–1462.

[23] P. Boersma and D. Weenink, “Praat, a system for doing phonet-
ics by computer,” Technical Report 132, Institute of Phonetic
Sciences of the University of Amsterdam, Amsterdam, Nether-
lands, 1996, http://www.praat.org.

[24] W. Mendenhall and T. Sincich, Statistics for Engineering and
the Sciences, Prentice-Hall, Upper Saddle River, NJ, USA,
2006.

8105


