

Motivation

Improve ASR Robustness

- **Security** Protect privacy in public
- **Robustness** ASR systems cannot detect whisper easily
- **Audiovisual** Add visual modality to improve recognition

Previous Works

- We showed improvement of 37% by including visual modality
- Limited by only using one subject

Word accuracy using HMM (Fan et al., 2011)							
stream	training	test	Word Accuracy				
audio data	neutral	neutral	98.7%				
audio data	whisper	whisper	83.3%				
audio data	neutral	whisper	42.7%				
video data	neutral	neutral	70.7%				
video data	whisper	whisper	68.0%				
video data	neutral	whisper	54.7%				
combined (best)	neutral	whisper	79.7%				

Goals:

- Create a corpus to study audiovisual whisper speech
- Identify changes on acoustic/facial features in whisper speech

Feature Analysis: Neutral Versus Whisper

Kullback-Leibler Divergence Analysis:

- Goal: quantify deviation from neutral speech
- Distribution determined using K-means algorithm (K=40)

$$KLD(P||Q) = \sum_{i} \ln(\frac{P(i)}{Q(i)})P(i)$$

- Data partitioned in two: reference and testing (cross-validation)
- Reference partition, P_{Ref}^{f} , uses only neutral speech condition

 $\Delta_{KLD}^{f} = \frac{KLD(P_{W}^{f}||P_{Ref}^{f}) - KLD(P_{N}^{f}||P_{Ref}^{f})}{KLD(P_{N}^{f}||P_{Ref}^{f})} \times 100$

Audiovisual Corpus to Analyze

Tam Tran, Soroosh Mariooryad and Car

Multimodal Signal Processing (MSP) Laborat Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas Richardson, Texas 75083, U.S.A.

Description

25 Speakers (13 male, 12 female) Analysis uses only 11 speakers Read speech (~ 20 min per subject) Part 1 – 60 Neutral/ 60 Whisper TIMIT Sentences Part 2 – 11 digits (1-9, zero, oh) 10x per mode/digit Spontaneous speech (~ 10 min per subject) Part 3 – 10 questions (5 per mode) ~ 45 sec each

Statistical Analysis

- Goal: analyze whether the differences are statistically significant
- Only digits data (11 digits), which is used as the matched condition
- Matched pair two-tailed *t*-test
- Values above threshold have statistically significant differences
- Acoustic features present differences between speech mode
- Four visual features present differences between speech mode

Audiovisua

<u>Equi</u>

- Au

- Vic

Whisper Speech							
rlos Bu tory	ISSO		UT DALLAS Multimodal Signal Processing Laboratory				
I Whisper (AVW) Corpus							
Extracted facial features using CERT							
<u>pment (so</u>	und booth):	Action unit	Description	Example Image			
dio – 48 KHz mono WAV		AU 10	Lip Raise	1 miles			
deo –1440x1080 pixels, 29.7fps		AU 12	Lip Corner Pull	00			
Frontal & si	de cameras	AU 15	Lip Corner Depressor				
wo LED light panels		AU 18	Lip Pucker	No.			
Speech features are extracted with openSMILE and Praat		AU 20	Lip Stretch				
Spectral LLDs							
Rfilt AudSpec [X]	RASTA-style filtered auditory spectrum bands 1-26 (0-8kHz)	AU 23	Lip Tightener				
MFCC [X] Fband [F1-F2] Spectral roll-off [X]	Niei-frequency cepstral coefficients 1-12 Spectral energy 25-650Hz, 1000-4000Hz Spectral roll-off point 0.25, 0.50, 0.75, 0.90	AU 24	Lip Presser				
Spectral [statistic] Formants [X]	Spectral flux, entropy, variance, skewness, kurtosis, slope Spectral Formants 1-5 (extracted with Praat)	AU 25	Lips Part				
Prosody LLDs AudSpec L1 Pfilt AudSpec L 1	Auditory spectrum L1-norm (loudness)	AU 26	Jaw Drop	ē			
RMS Energy	RMS Energy	AU 28	Lips Suck	00			
ZCR	Zero-crossing rate						
F0	Fundamental frequency		Lip Features				
Voicing prob	Voicing probability	Lip spreading	Horizontal Lin				
Voice Quality LLDs Jitter	Frame-to-frame F0 deviations		Spreading				
Δ litter	Frame-to-frame Jitter deviations	Source . http://hanana	Source: http://www.cs.cmu.edu/~face/facs.htm				
Shimmer	Frame-to-frame amplitude deviations						

Conclusions:

- Orofacial area provide whisper-invariant features that can improve ASR performance

Future Directions

- Increase size of corpus (40 speakers)
- We expect to make the corpus available to the community
- Identify other facial features (DCT, Gabor filter, HOG)
- Identify suitable graphical models to train audiovisual ASR

References:

X. Fan, C. Busso, and J.H.L. Hansen, "Audio-visual isolated digit recognition for whispered speech," in European Signal Processing Conference (EUSIPCO-2011), Barcelona, Spain, August-September 2011, pp. 1500–1503.

Discussion

Visual features are less affected by changes between neutral and whisper conditions